Algebraic multigrid preconditioning for finite-element methods for 3-D electromagnetic modelling in geophysics

Efficiency of a 3-D electromagnetic numerical modelling scheme is critical for its future use within a 3-D electromagnetic inversion algorithm. Therefore, we have developed and implemented a more elaborate preconditioning technique for Krylov subspace methods to improve the performance and reduce th...

Full description

Bibliographic Details
Main Authors: Koldan, J., Puzyrev, Volodymyr, Cela, J.
Format: Conference Paper
Published: 2013
Online Access:http://hdl.handle.net/20.500.11937/40467
_version_ 1848755879080361984
author Koldan, J.
Puzyrev, Volodymyr
Cela, J.
author_facet Koldan, J.
Puzyrev, Volodymyr
Cela, J.
author_sort Koldan, J.
building Curtin Institutional Repository
collection Online Access
description Efficiency of a 3-D electromagnetic numerical modelling scheme is critical for its future use within a 3-D electromagnetic inversion algorithm. Therefore, we have developed and implemented a more elaborate preconditioning technique for Krylov subspace methods to improve the performance and reduce the execution time of nodal finite-element solvers for 3-D electromagnetic modelling in geophysics. This new preconditioner is based on algebraic multigrid that uses different basic relaxation methods as smoothers, such as Jacobi, Gauss-Seidel and symmetric successive over-relaxation, and the wave-front algorithm to create groups, on which generation of coarse spaces is based. Also, it is designed as a black box, so that it can be employed by different iterative methods without any additional modifications of the solver's algorithm. Tests for various problems with different conductivity structures and characteristics have shown that our preconditioner improves the convergence of different iterative solvers to a great extent and thus significantly reduces the total execution time of the whole program.
first_indexed 2025-11-14T09:03:19Z
format Conference Paper
id curtin-20.500.11937-40467
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T09:03:19Z
publishDate 2013
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-404672017-01-30T14:43:16Z Algebraic multigrid preconditioning for finite-element methods for 3-D electromagnetic modelling in geophysics Koldan, J. Puzyrev, Volodymyr Cela, J. Efficiency of a 3-D electromagnetic numerical modelling scheme is critical for its future use within a 3-D electromagnetic inversion algorithm. Therefore, we have developed and implemented a more elaborate preconditioning technique for Krylov subspace methods to improve the performance and reduce the execution time of nodal finite-element solvers for 3-D electromagnetic modelling in geophysics. This new preconditioner is based on algebraic multigrid that uses different basic relaxation methods as smoothers, such as Jacobi, Gauss-Seidel and symmetric successive over-relaxation, and the wave-front algorithm to create groups, on which generation of coarse spaces is based. Also, it is designed as a black box, so that it can be employed by different iterative methods without any additional modifications of the solver's algorithm. Tests for various problems with different conductivity structures and characteristics have shown that our preconditioner improves the convergence of different iterative solvers to a great extent and thus significantly reduces the total execution time of the whole program. 2013 Conference Paper http://hdl.handle.net/20.500.11937/40467 restricted
spellingShingle Koldan, J.
Puzyrev, Volodymyr
Cela, J.
Algebraic multigrid preconditioning for finite-element methods for 3-D electromagnetic modelling in geophysics
title Algebraic multigrid preconditioning for finite-element methods for 3-D electromagnetic modelling in geophysics
title_full Algebraic multigrid preconditioning for finite-element methods for 3-D electromagnetic modelling in geophysics
title_fullStr Algebraic multigrid preconditioning for finite-element methods for 3-D electromagnetic modelling in geophysics
title_full_unstemmed Algebraic multigrid preconditioning for finite-element methods for 3-D electromagnetic modelling in geophysics
title_short Algebraic multigrid preconditioning for finite-element methods for 3-D electromagnetic modelling in geophysics
title_sort algebraic multigrid preconditioning for finite-element methods for 3-d electromagnetic modelling in geophysics
url http://hdl.handle.net/20.500.11937/40467