Chronological categorization and decomposition of customer loads

The majority of distribution utilities do not have accurate information on the constituents of their loads. This information is very useful in managing and planning the network, adequately and economically. Customer loads are normally categorized in three main sectors: 1) residential; 2) industrial;...

Full description

Bibliographic Details
Main Authors: Nourbakhsh, G., Eden, G., McVeigh, D., Ghosh, Arindam
Format: Journal Article
Published: IEEE Power Engineering Society 2012
Online Access:http://hdl.handle.net/20.500.11937/40292
Description
Summary:The majority of distribution utilities do not have accurate information on the constituents of their loads. This information is very useful in managing and planning the network, adequately and economically. Customer loads are normally categorized in three main sectors: 1) residential; 2) industrial; and3) commercial. In this paper, penalized least-squares regression and Euclidean distance methods are developed for this application to identify and quantify the makeup of a feeder load with unknown sectors/subsectors. This process is done on a monthly basis to account for seasonal and other load changes. The error between the actual and estimated load profiles are used as a benchmark of accuracy. This approach has shown to be accurate in identifying customer types in unknown load profiles, and is used in cross-validation of the results and initial assumptions.