In situ fabrication of (Sr,La)FeO4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode

© 2016 The Royal Society of Chemistry.An independent catalyst layer is applied to develop a highly effective way to reduce coking when operating in methane based fuels, in which the catalyst layer is separated from a Ni cermet anode. In this way, Ni cermet anode conductivity is not influenced, and c...

Full description

Bibliographic Details
Main Authors: Chang, H., Chen, H., Shao, Zongping, Shi, J., Bai, J., Li, S.
Format: Journal Article
Published: R S C Publications 2016
Online Access:http://hdl.handle.net/20.500.11937/40019
_version_ 1848755752433352704
author Chang, H.
Chen, H.
Shao, Zongping
Shi, J.
Bai, J.
Li, S.
author_facet Chang, H.
Chen, H.
Shao, Zongping
Shi, J.
Bai, J.
Li, S.
author_sort Chang, H.
building Curtin Institutional Repository
collection Online Access
description © 2016 The Royal Society of Chemistry.An independent catalyst layer is applied to develop a highly effective way to reduce coking when operating in methane based fuels, in which the catalyst layer is separated from a Ni cermet anode. In this way, Ni cermet anode conductivity is not influenced, and cell cracking due to the thermal-mechanical stress from the mismatched thermal expansion coefficients (TECs) between the catalyst and anode materials, the temperature gradients within the anode caused by the highly endothermic reforming reaction of methane, and the large internal strain during the reduction process is also avoided. La0.6Sr0.4Co0.2Fe0.8O3-d (LSCF), which is co-pressed with an Al2O3 substrate into a double-layered slice with a mesoporous structure, functions as an independent catalyst layer of the Ni-based anode. Under SOFC operating conditions, a K2NiF4-type oxide (Sr,La)FeO4 with homogeneously dispersed CoFe alloy nanoparticles is formed, which shows good catalytic activity for methane partial oxidation with 88% conversion at 950 °C in a mixture of CH4 and O2 (1-1). A conventional cell with the state-of-art Ni cermet anode (NiO-8% Y stabilized ZrO2 (YSZ)/YSZ/La0.8Sr0.2MnO3-YSZ) is constructed and the electrochemical performance of cells with and without the independent catalyst layer is tested. In wet methane, the voltage of the conventional cell without the catalyst layer declines rapidly from 0.7 V to 0.1 V within 20 min at 333 mA cm-2 and 800 °C. In contrast, the voltage of the modified cell with an independent catalyst layer stabilizes at 0.79 V with negligible degradation within 116 h. In wet coal bed methane (CBM), the voltage of the modified cell with an independent catalyst layer exhibits a slow decrease from 0.69 V to 0.66 V within 12 h. The stable power output of the cell with an independent catalyst layer under a constant current load in methane indicates excellent coking resistance. The microstructure and surface composition of the catalyst layer and anode are further analyzed by SEM and EDX after the stability test.
first_indexed 2025-11-14T09:01:18Z
format Journal Article
id curtin-20.500.11937-40019
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T09:01:18Z
publishDate 2016
publisher R S C Publications
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-400192023-08-02T06:39:08Z In situ fabrication of (Sr,La)FeO4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode Chang, H. Chen, H. Shao, Zongping Shi, J. Bai, J. Li, S. © 2016 The Royal Society of Chemistry.An independent catalyst layer is applied to develop a highly effective way to reduce coking when operating in methane based fuels, in which the catalyst layer is separated from a Ni cermet anode. In this way, Ni cermet anode conductivity is not influenced, and cell cracking due to the thermal-mechanical stress from the mismatched thermal expansion coefficients (TECs) between the catalyst and anode materials, the temperature gradients within the anode caused by the highly endothermic reforming reaction of methane, and the large internal strain during the reduction process is also avoided. La0.6Sr0.4Co0.2Fe0.8O3-d (LSCF), which is co-pressed with an Al2O3 substrate into a double-layered slice with a mesoporous structure, functions as an independent catalyst layer of the Ni-based anode. Under SOFC operating conditions, a K2NiF4-type oxide (Sr,La)FeO4 with homogeneously dispersed CoFe alloy nanoparticles is formed, which shows good catalytic activity for methane partial oxidation with 88% conversion at 950 °C in a mixture of CH4 and O2 (1-1). A conventional cell with the state-of-art Ni cermet anode (NiO-8% Y stabilized ZrO2 (YSZ)/YSZ/La0.8Sr0.2MnO3-YSZ) is constructed and the electrochemical performance of cells with and without the independent catalyst layer is tested. In wet methane, the voltage of the conventional cell without the catalyst layer declines rapidly from 0.7 V to 0.1 V within 20 min at 333 mA cm-2 and 800 °C. In contrast, the voltage of the modified cell with an independent catalyst layer stabilizes at 0.79 V with negligible degradation within 116 h. In wet coal bed methane (CBM), the voltage of the modified cell with an independent catalyst layer exhibits a slow decrease from 0.69 V to 0.66 V within 12 h. The stable power output of the cell with an independent catalyst layer under a constant current load in methane indicates excellent coking resistance. The microstructure and surface composition of the catalyst layer and anode are further analyzed by SEM and EDX after the stability test. 2016 Journal Article http://hdl.handle.net/20.500.11937/40019 10.1039/c6ta04639h R S C Publications restricted
spellingShingle Chang, H.
Chen, H.
Shao, Zongping
Shi, J.
Bai, J.
Li, S.
In situ fabrication of (Sr,La)FeO4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode
title In situ fabrication of (Sr,La)FeO4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode
title_full In situ fabrication of (Sr,La)FeO4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode
title_fullStr In situ fabrication of (Sr,La)FeO4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode
title_full_unstemmed In situ fabrication of (Sr,La)FeO4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode
title_short In situ fabrication of (Sr,La)FeO4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode
title_sort in situ fabrication of (sr,la)feo4 with cofe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode
url http://hdl.handle.net/20.500.11937/40019