Different Crystallographic One-dimensional MnO2 Nanomaterials and Their Superior Performance in Catalytic Phenol Degradation

Three one-dimensional MnO2 nanoparticles with different crystallographic phases, alpha-, beta-, and gamma-MnO2, were synthesized, characterized, and tested in heterogeneous activation of Oxone for phenol degradation in aqueous solution. The alpha-, beta-, and gamma-MnO2 nanostructured materials pres...

Full description

Bibliographic Details
Main Authors: Saputra, E., Muhammad, S., Sun, Hongqi, Ang, Ha Ming, Tade, Moses, Wang, Shaobin
Format: Journal Article
Published: American Chemical Society 2013
Online Access:http://hdl.handle.net/20.500.11937/39997
_version_ 1848755746543501312
author Saputra, E.
Muhammad, S.
Sun, Hongqi
Ang, Ha Ming
Tade, Moses
Wang, Shaobin
author_facet Saputra, E.
Muhammad, S.
Sun, Hongqi
Ang, Ha Ming
Tade, Moses
Wang, Shaobin
author_sort Saputra, E.
building Curtin Institutional Repository
collection Online Access
description Three one-dimensional MnO2 nanoparticles with different crystallographic phases, alpha-, beta-, and gamma-MnO2, were synthesized, characterized, and tested in heterogeneous activation of Oxone for phenol degradation in aqueous solution. The alpha-, beta-, and gamma-MnO2 nanostructured materials presented in morphologies of nanowires, nanorods, and nanofibers, respectively. They showed varying activities in activation of Oxone to generate sulfate radicals for phenol degradation depending on surface area and crystalline structure. alpha-MnO2 nanowires exhibited the highest activity and could degrade phenol in 60 min at phenol concentrations ranging in 25-100 mg/L. It was found that phenol degradation on alpha-MnO2 followed first order kinetics with an activation energy of 21.9 kJ/mol. The operational parameters, such as MnO2 and Oxone loading, phenol concentration and temperature, were found to influence phenol degradation efficiency. It was also found that alpha-MnO2 exhibited high stability in recycled tests without losing activity, demonstrating itself to be a superior heterogeneous catalyst to the toxic Co3O4 and Co2+.
first_indexed 2025-11-14T09:01:12Z
format Journal Article
id curtin-20.500.11937-39997
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T09:01:12Z
publishDate 2013
publisher American Chemical Society
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-399972017-09-13T15:08:56Z Different Crystallographic One-dimensional MnO2 Nanomaterials and Their Superior Performance in Catalytic Phenol Degradation Saputra, E. Muhammad, S. Sun, Hongqi Ang, Ha Ming Tade, Moses Wang, Shaobin Three one-dimensional MnO2 nanoparticles with different crystallographic phases, alpha-, beta-, and gamma-MnO2, were synthesized, characterized, and tested in heterogeneous activation of Oxone for phenol degradation in aqueous solution. The alpha-, beta-, and gamma-MnO2 nanostructured materials presented in morphologies of nanowires, nanorods, and nanofibers, respectively. They showed varying activities in activation of Oxone to generate sulfate radicals for phenol degradation depending on surface area and crystalline structure. alpha-MnO2 nanowires exhibited the highest activity and could degrade phenol in 60 min at phenol concentrations ranging in 25-100 mg/L. It was found that phenol degradation on alpha-MnO2 followed first order kinetics with an activation energy of 21.9 kJ/mol. The operational parameters, such as MnO2 and Oxone loading, phenol concentration and temperature, were found to influence phenol degradation efficiency. It was also found that alpha-MnO2 exhibited high stability in recycled tests without losing activity, demonstrating itself to be a superior heterogeneous catalyst to the toxic Co3O4 and Co2+. 2013 Journal Article http://hdl.handle.net/20.500.11937/39997 10.1021/es400878c American Chemical Society restricted
spellingShingle Saputra, E.
Muhammad, S.
Sun, Hongqi
Ang, Ha Ming
Tade, Moses
Wang, Shaobin
Different Crystallographic One-dimensional MnO2 Nanomaterials and Their Superior Performance in Catalytic Phenol Degradation
title Different Crystallographic One-dimensional MnO2 Nanomaterials and Their Superior Performance in Catalytic Phenol Degradation
title_full Different Crystallographic One-dimensional MnO2 Nanomaterials and Their Superior Performance in Catalytic Phenol Degradation
title_fullStr Different Crystallographic One-dimensional MnO2 Nanomaterials and Their Superior Performance in Catalytic Phenol Degradation
title_full_unstemmed Different Crystallographic One-dimensional MnO2 Nanomaterials and Their Superior Performance in Catalytic Phenol Degradation
title_short Different Crystallographic One-dimensional MnO2 Nanomaterials and Their Superior Performance in Catalytic Phenol Degradation
title_sort different crystallographic one-dimensional mno2 nanomaterials and their superior performance in catalytic phenol degradation
url http://hdl.handle.net/20.500.11937/39997