Performance of PrBaCo2O5+d as a proton-conducting solid-oxide fuel cell cathode
The potential application of PrBaCo2O5-d (PBC) double perovskite oxide as a cathode for a proton-conducting solid-oxide fuel cell based on a BaZr0.1Ce0.7Y0.2O 3-d(BZCY) electrolyte was systematically investigated. XRD and O2-TPD results demonstrated that cation exchange between BZCY and PBC perovski...
| Main Authors: | Lin, Y., Ran, R., Zhang, C., Cai, R., Shao, Zongping |
|---|---|
| Format: | Journal Article |
| Published: |
American Chemical Society
2010
|
| Online Access: | http://hdl.handle.net/20.500.11937/39922 |
Similar Items
Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+d cathode on samarium-doped ceria electrolyte
by: Chen, D., et al.
Published: (2009)
by: Chen, D., et al.
Published: (2009)
Oriented PrBaCo2O5+δ thin films for solid oxide fuel cells
by: Gao, Y., et al.
Published: (2015)
by: Gao, Y., et al.
Published: (2015)
Assessment of PrBaCo2O5+d + Sm 0.2Ce0.8O1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells
by: Chen, D., et al.
Published: (2010)
by: Chen, D., et al.
Published: (2010)
Silver-modified Ba0.5Sr0.5Co0.8Fe 0.2O3-d as cathodes for a proton conducting solid-oxide fuel cell
by: Lin, Y., et al.
Published: (2010)
by: Lin, Y., et al.
Published: (2010)
Effect of firing temperature on the microstructure and performance of PrBaCo2O5+d cathodes on Sm0.2Ce0.8O1.9 electrolytes fabricated by spray deposition-firing processes
by: Chen, D., et al.
Published: (2010)
by: Chen, D., et al.
Published: (2010)
Characterization and evaluation of BaCo0.7Fe0.2Nb0.1O3Ld as a cathode for proton-conducting solid oxide fuel cells
by: Lin, Y., et al.
Published: (2012)
by: Lin, Y., et al.
Published: (2012)
Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-d as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell
by: Lin, Y., et al.
Published: (2008)
by: Lin, Y., et al.
Published: (2008)
A novel Ba0.6Sr0.4Co0.9Nb0.1O3-d cathode for protonic solid-oxide fuel cells
by: Lin, Y., et al.
Published: (2010)
by: Lin, Y., et al.
Published: (2010)
A new neodymium-doped BaZr0.8Y0.2O3-δ as potential electrolyte for proton-conducting solid oxide fuel cells
by: Liu, Y., et al.
Published: (2012)
by: Liu, Y., et al.
Published: (2012)
Modeling of proton-conducting solid oxide fuel cells fueled with syngas
by: Ni, M., et al.
Published: (2014)
by: Ni, M., et al.
Published: (2014)
Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures
by: Lin, Y., et al.
Published: (2010)
by: Lin, Y., et al.
Published: (2010)
Fabrication and performance of a carbon dioxide-tolerant proton-conducting solid oxide fuel cells with a dual-layer electrolyte
by: Guo, Y., et al.
Published: (2010)
by: Guo, Y., et al.
Published: (2010)
A novel way to improve performance of proton-conducting solid-oxide fuel cells through enhanced chemical interaction of anode components
by: Guo, Y., et al.
Published: (2011)
by: Guo, Y., et al.
Published: (2011)
Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-d (0.0 = y = 0.8) for fuel cell applications
by: Guo, Y., et al.
Published: (2009)
by: Guo, Y., et al.
Published: (2009)
High performance tubular solid oxide fuel cells with BSCF cathode
by: Shi, H., et al.
Published: (2012)
by: Shi, H., et al.
Published: (2012)
Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1-xCo0.8Fe0.2O3-d (x > 0) perovskite as a solid-oxide fuel cell cathode
by: Zhou, W., et al.
Published: (2008)
by: Zhou, W., et al.
Published: (2008)
Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+8 as materials of oxygen permeation membranes and cathodes of SOFCs
by: Zhang, K., et al.
Published: (2008)
by: Zhang, K., et al.
Published: (2008)
Study on proton-conducting solid oxide fuel cells with a conventional nickel cermet anode operating on dimethyl ether
by: Liu, Y., et al.
Published: (2011)
by: Liu, Y., et al.
Published: (2011)
Evaluation of Ba0.6Sr0.4Co0.9Nb0.1O3-d mixed conductor as a cathode for intermediate-temperature oxygen-ionic solid-oxide fuel cells
by: Huang, C., et al.
Published: (2010)
by: Huang, C., et al.
Published: (2010)
Advanced Cathodes for Solid Oxide Fuel Cells
by: Zhou, W., et al.
Published: (2012)
by: Zhou, W., et al.
Published: (2012)
Performance and durability of a layered proton conducting solid oxide fuel cell fueled by the dry reforming of methane
by: Guo, Y., et al.
Published: (2017)
by: Guo, Y., et al.
Published: (2017)
Optimizing the modification method of zinc-enhanced sintering of BaZr 0.4Ce0.4Y0.2O3-d-based electrolytes for application in an anode-supported protonic solid oxide fuel cell
by: Guo, Y., et al.
Published: (2010)
by: Guo, Y., et al.
Published: (2010)
Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-d cathodes prepared via electroless deposition
by: Zhou, W., et al.
Published: (2008)
by: Zhou, W., et al.
Published: (2008)
Structure, sinterability, chemical stability and conductivity of proton-conducting BaZr0.6M0.2Y0.2O3-[delta] electrolyte membranes: The effect of the M dopant
by: Liu, Y., et al.
Published: (2014)
by: Liu, Y., et al.
Published: (2014)
Performance variability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode on proton-conducting electrolyte SOFCs with Ag and Au current collectors
by: Wan, T., et al.
Published: (2017)
by: Wan, T., et al.
Published: (2017)
Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3-d oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells
by: Zhou, W., et al.
Published: (2008)
by: Zhou, W., et al.
Published: (2008)
Evaluation of SrSc0.175Nb0.025Co0.8O3-δ perovskite as a cathode for proton-conducting solid oxide fuel cells: The possibility of in situ creating protonic conductivity and electrochemical performance
by: Zhu, A., et al.
Published: (2018)
by: Zhu, A., et al.
Published: (2018)
A high-performance cathode for the next generation of solid-oxide fuel cells
by: Shao, Zongping, et al.
Published: (2010)
by: Shao, Zongping, et al.
Published: (2010)
Electrochemical performance and effect of moisture on Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3-δ oxide as a promising electrode for proton-conducting solid oxide fuel cells
by: Zhang, Y., et al.
Published: (2019)
by: Zhang, Y., et al.
Published: (2019)
Initialization of a methane-fueled single-chamber solid-oxide fuel cell with NiO + SDC anode and BSCF + SDC cathode
by: Zhang, C., et al.
Published: (2008)
by: Zhang, C., et al.
Published: (2008)
Reaction model for cathodes cooperated with oxygen-ion conductors for solid oxide fuel cells using proton-conducting electrolytes
by: Zhao, Ling, et al.
Published: (2012)
by: Zhao, Ling, et al.
Published: (2012)
Systematic evaluation of Co-free LnBaFe2O5+[delta](Ln = Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells
by: Chen, D., et al.
Published: (2012)
by: Chen, D., et al.
Published: (2012)
Cathode materials for solid oxide fuel cells towards operating at intermediate-to-low temperature range
by: Shao, Zongping
Published: (2011)
by: Shao, Zongping
Published: (2011)
A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-d perovskite oxide as both the anode and cathode
by: Zheng, Y., et al.
Published: (2009)
by: Zheng, Y., et al.
Published: (2009)
Electrochemical contribution of silver current collector to oxygen reduction reaction over Ba0.5Sr0.5Co0.8Fe0.2O3Ld electrode on oxygen-ionic conducting electrolyte
by: Guo, Y., et al.
Published: (2012)
by: Guo, Y., et al.
Published: (2012)
Building Ruddlesden–Popper and Single Perovskite Nanocomposites: A New Strategy to Develop High-Performance Cathode for Protonic Ceramic Fuel Cells
by: Shi, H., et al.
Published: (2021)
by: Shi, H., et al.
Published: (2021)
Evaluation of the CO2 tolerant cathode for solid oxide fuel cells: Praseodymium oxysulfates/Ba0.5Sr0.5Co0.8Fe0.2O3-δ
by: Yang, T., et al.
Published: (2018)
by: Yang, T., et al.
Published: (2018)
An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0·95Sn0·05O3−δ
by: Dong, F., et al.
Published: (2016)
by: Dong, F., et al.
Published: (2016)
Significant impact of the current collection material and method on the performance of Ba0.5Sr0.5Co0.8Fe 0.2O3-d electrodes in solid oxide fuel cells
by: Guo, Y., et al.
Published: (2011)
by: Guo, Y., et al.
Published: (2011)
Similar Items
-
Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+d cathode on samarium-doped ceria electrolyte
by: Chen, D., et al.
Published: (2009) -
Oriented PrBaCo2O5+δ thin films for solid oxide fuel cells
by: Gao, Y., et al.
Published: (2015) -
Assessment of PrBaCo2O5+d + Sm 0.2Ce0.8O1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells
by: Chen, D., et al.
Published: (2010) -
Silver-modified Ba0.5Sr0.5Co0.8Fe 0.2O3-d as cathodes for a proton conducting solid-oxide fuel cell
by: Lin, Y., et al.
Published: (2010) -
Effect of firing temperature on the microstructure and performance of PrBaCo2O5+d cathodes on Sm0.2Ce0.8O1.9 electrolytes fabricated by spray deposition-firing processes
by: Chen, D., et al.
Published: (2010)