On the computation of the best integer equivariant estimator

Carrier phase integer ambiguity resolution is the key to high precision Global Navigation Satellite System (GNSS) positioning and navigation. In this contribution we study some of the computational aspects of best integer equivariant estimation. The best integer equivariant (BIE) estimator is the op...

Full description

Bibliographic Details
Main Author: Teunissen, Peter
Format: Journal Article
Published: Versita 2005
Subjects:
Online Access:http://saegnss1.curtin.edu.au/Publications/2005/Teunissen2005computation.pdf
http://hdl.handle.net/20.500.11937/3969
_version_ 1848744381700374528
author Teunissen, Peter
author_facet Teunissen, Peter
author_sort Teunissen, Peter
building Curtin Institutional Repository
collection Online Access
description Carrier phase integer ambiguity resolution is the key to high precision Global Navigation Satellite System (GNSS) positioning and navigation. In this contribution we study some of the computational aspects of best integer equivariant estimation. The best integer equivariant (BIE) estimator is the optimal estimator of the class of integer equivariant estimators, which is one of the three classes of estimators for carrier phase ambiguity resolution. The two other classes are the class of integer estimators and the class of integer aperture estimators. Since the BIE-estimator can not be computed exactly, it is shown how to approximate this estimator while retaining the property of integer equivariance. It is also shown how the decorrelating Z-transformation and the integer search of the LAMBDA method can be used to speed up the computation of the BIE-estimator.
first_indexed 2025-11-14T06:00:34Z
format Journal Article
id curtin-20.500.11937-3969
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T06:00:34Z
publishDate 2005
publisher Versita
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-39692017-01-30T10:35:32Z On the computation of the best integer equivariant estimator Teunissen, Peter Best Integer Equivariant Estimation GNSS Ambiguity Resolution Integer Least-Squares Carrier phase integer ambiguity resolution is the key to high precision Global Navigation Satellite System (GNSS) positioning and navigation. In this contribution we study some of the computational aspects of best integer equivariant estimation. The best integer equivariant (BIE) estimator is the optimal estimator of the class of integer equivariant estimators, which is one of the three classes of estimators for carrier phase ambiguity resolution. The two other classes are the class of integer estimators and the class of integer aperture estimators. Since the BIE-estimator can not be computed exactly, it is shown how to approximate this estimator while retaining the property of integer equivariance. It is also shown how the decorrelating Z-transformation and the integer search of the LAMBDA method can be used to speed up the computation of the BIE-estimator. 2005 Journal Article http://hdl.handle.net/20.500.11937/3969 http://saegnss1.curtin.edu.au/Publications/2005/Teunissen2005computation.pdf Versita fulltext
spellingShingle Best Integer Equivariant Estimation
GNSS Ambiguity Resolution
Integer Least-Squares
Teunissen, Peter
On the computation of the best integer equivariant estimator
title On the computation of the best integer equivariant estimator
title_full On the computation of the best integer equivariant estimator
title_fullStr On the computation of the best integer equivariant estimator
title_full_unstemmed On the computation of the best integer equivariant estimator
title_short On the computation of the best integer equivariant estimator
title_sort on the computation of the best integer equivariant estimator
topic Best Integer Equivariant Estimation
GNSS Ambiguity Resolution
Integer Least-Squares
url http://saegnss1.curtin.edu.au/Publications/2005/Teunissen2005computation.pdf
http://hdl.handle.net/20.500.11937/3969