Shape-controlled synthesis of one-dimensional a-MnO2 nanocrystals for organic detection and pollutant degradation

Shape control is an important technique for improving the quality and activity of nanomaterials. Two types of one-dimensional manganese dioxide (MnO2) nanocrystals with different shapes were synthesized by facile hydrothermal methods as the catalyst materials for both sensor fabrication and heteroge...

Full description

Bibliographic Details
Main Authors: Peng, W., Wang, Shaobin, Li, X.
Format: Journal Article
Published: Pergamon Press 2016
Online Access:http://hdl.handle.net/20.500.11937/38627
Description
Summary:Shape control is an important technique for improving the quality and activity of nanomaterials. Two types of one-dimensional manganese dioxide (MnO2) nanocrystals with different shapes were synthesized by facile hydrothermal methods as the catalyst materials for both sensor fabrication and heterogeneous catalytic reactions. The nanomaterials present an α-crystalline phase (α-MnO2) in either nanotube or nanowire shapes. The α-MnO2 nanocrystals were found to have a favorable electrochemical property that can be used to fabricate sensors for rapid detection of hydrogen peroxide and l-ascorbic acid. The α-MnO2 also functioned well as a catalyst for the oxidation of phenol and chlorophenol by peroxymonosulfate and hydrogen peroxide in an aqueous solution at room temperature. Comparison between the two differently shaped α-MnO2 catalysts indicated that nanowires performed better than nanotubes in both electrocatalytic detection and catalytic phenol degradation. Compared to α-MnO2 nanotubes, nanowires have a much greater surface area and lower negative surface charge density, which are probably the main reasons for their higher catalytic activities.