Parameter selection for nonnegative l1 matrix/tensor sparse decomposition

For the nonnegative l1 matrix/tensor sparse decomposition problem, we derive a threshold bound for the parameters beyond which all the decomposition factors are zero. The obtained result provides a guideline on selection for l1 regularization parameters and extends the corresponding result on Lasso...

Full description

Bibliographic Details
Main Authors: Wang, Y., Liu, Wan-Quan, Caccetta, Louis, Zhou, Guanglu
Format: Journal Article
Published: Elsevier 2015
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/38485
_version_ 1848755333346885632
author Wang, Y.
Liu, Wan-Quan
Caccetta, Louis
Zhou, Guanglu
author_facet Wang, Y.
Liu, Wan-Quan
Caccetta, Louis
Zhou, Guanglu
author_sort Wang, Y.
building Curtin Institutional Repository
collection Online Access
description For the nonnegative l1 matrix/tensor sparse decomposition problem, we derive a threshold bound for the parameters beyond which all the decomposition factors are zero. The obtained result provides a guideline on selection for l1 regularization parameters and extends the corresponding result on Lasso optimization problem.
first_indexed 2025-11-14T08:54:38Z
format Journal Article
id curtin-20.500.11937-38485
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T08:54:38Z
publishDate 2015
publisher Elsevier
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-384852017-09-13T15:58:41Z Parameter selection for nonnegative l1 matrix/tensor sparse decomposition Wang, Y. Liu, Wan-Quan Caccetta, Louis Zhou, Guanglu Threshold bound Global optimal solution Zero solution Regularization parameter Sparse decomposition For the nonnegative l1 matrix/tensor sparse decomposition problem, we derive a threshold bound for the parameters beyond which all the decomposition factors are zero. The obtained result provides a guideline on selection for l1 regularization parameters and extends the corresponding result on Lasso optimization problem. 2015 Journal Article http://hdl.handle.net/20.500.11937/38485 10.1016/j.orl.2015.06.005 Elsevier restricted
spellingShingle Threshold bound
Global optimal solution
Zero solution
Regularization parameter
Sparse decomposition
Wang, Y.
Liu, Wan-Quan
Caccetta, Louis
Zhou, Guanglu
Parameter selection for nonnegative l1 matrix/tensor sparse decomposition
title Parameter selection for nonnegative l1 matrix/tensor sparse decomposition
title_full Parameter selection for nonnegative l1 matrix/tensor sparse decomposition
title_fullStr Parameter selection for nonnegative l1 matrix/tensor sparse decomposition
title_full_unstemmed Parameter selection for nonnegative l1 matrix/tensor sparse decomposition
title_short Parameter selection for nonnegative l1 matrix/tensor sparse decomposition
title_sort parameter selection for nonnegative l1 matrix/tensor sparse decomposition
topic Threshold bound
Global optimal solution
Zero solution
Regularization parameter
Sparse decomposition
url http://hdl.handle.net/20.500.11937/38485