Topotactic Transformation of Metal-Organic Frameworks to Graphene-Encapsulated Transition-Metal Nitrides as Efficient Fenton-like Catalysts
Innovation in transition-metal nitride (TMN) preparation is highly desired for realization of various functionalities. Herein, series of graphene-encapsulated TMNs (FexMn6-xCo4-N@C) with well-controlled morphology have been synthesized through topotactic transformation of metal-organic frameworks in...
| Main Authors: | , , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
American Chemical Society
2016
|
| Online Access: | http://hdl.handle.net/20.500.11937/38393 |
| _version_ | 1848755308586860544 |
|---|---|
| author | Li, X. Ao, Z. Liu, J. Sun, Hongqi Rykov, A. Wang, J. |
| author_facet | Li, X. Ao, Z. Liu, J. Sun, Hongqi Rykov, A. Wang, J. |
| author_sort | Li, X. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | Innovation in transition-metal nitride (TMN) preparation is highly desired for realization of various functionalities. Herein, series of graphene-encapsulated TMNs (FexMn6-xCo4-N@C) with well-controlled morphology have been synthesized through topotactic transformation of metal-organic frameworks in an N2 atmosphere. The as-synthesized FexMn6-xCo4-N@C nanodices were systematically characterized and functionalized as Fenton-like catalysts for catalytic bisphenol A (BPA) oxidation by activation of peroxymonosulfate (PMS). The catalytic performance of FexMn6-xCo4-N@C was found to be largely enhanced with increasing Mn content. Theoretical calculations illustrated that the dramatically reduced adsorption energy and facilitated electron transfer for PMS activation catalyzed by Mn4N are the main factors for the excellent activity. Both sulfate and hydroxyl radicals were identified during the PMS activation, and the BPA degradation pathway mainly through hydroxylation, oxidation, and decarboxylation was investigated. Based on the systematic characterization of the catalyst before and after the reaction, the overall PMS activation mechanism over FexMn6-xCo4-N@C was proposed. This study details the insights into versatile TMNs for sustainable remediation by activation of PMS. |
| first_indexed | 2025-11-14T08:54:15Z |
| format | Journal Article |
| id | curtin-20.500.11937-38393 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T08:54:15Z |
| publishDate | 2016 |
| publisher | American Chemical Society |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-383932017-09-13T14:10:12Z Topotactic Transformation of Metal-Organic Frameworks to Graphene-Encapsulated Transition-Metal Nitrides as Efficient Fenton-like Catalysts Li, X. Ao, Z. Liu, J. Sun, Hongqi Rykov, A. Wang, J. Innovation in transition-metal nitride (TMN) preparation is highly desired for realization of various functionalities. Herein, series of graphene-encapsulated TMNs (FexMn6-xCo4-N@C) with well-controlled morphology have been synthesized through topotactic transformation of metal-organic frameworks in an N2 atmosphere. The as-synthesized FexMn6-xCo4-N@C nanodices were systematically characterized and functionalized as Fenton-like catalysts for catalytic bisphenol A (BPA) oxidation by activation of peroxymonosulfate (PMS). The catalytic performance of FexMn6-xCo4-N@C was found to be largely enhanced with increasing Mn content. Theoretical calculations illustrated that the dramatically reduced adsorption energy and facilitated electron transfer for PMS activation catalyzed by Mn4N are the main factors for the excellent activity. Both sulfate and hydroxyl radicals were identified during the PMS activation, and the BPA degradation pathway mainly through hydroxylation, oxidation, and decarboxylation was investigated. Based on the systematic characterization of the catalyst before and after the reaction, the overall PMS activation mechanism over FexMn6-xCo4-N@C was proposed. This study details the insights into versatile TMNs for sustainable remediation by activation of PMS. 2016 Journal Article http://hdl.handle.net/20.500.11937/38393 10.1021/acsnano.6b07522 American Chemical Society restricted |
| spellingShingle | Li, X. Ao, Z. Liu, J. Sun, Hongqi Rykov, A. Wang, J. Topotactic Transformation of Metal-Organic Frameworks to Graphene-Encapsulated Transition-Metal Nitrides as Efficient Fenton-like Catalysts |
| title | Topotactic Transformation of Metal-Organic Frameworks to Graphene-Encapsulated Transition-Metal Nitrides as Efficient Fenton-like Catalysts |
| title_full | Topotactic Transformation of Metal-Organic Frameworks to Graphene-Encapsulated Transition-Metal Nitrides as Efficient Fenton-like Catalysts |
| title_fullStr | Topotactic Transformation of Metal-Organic Frameworks to Graphene-Encapsulated Transition-Metal Nitrides as Efficient Fenton-like Catalysts |
| title_full_unstemmed | Topotactic Transformation of Metal-Organic Frameworks to Graphene-Encapsulated Transition-Metal Nitrides as Efficient Fenton-like Catalysts |
| title_short | Topotactic Transformation of Metal-Organic Frameworks to Graphene-Encapsulated Transition-Metal Nitrides as Efficient Fenton-like Catalysts |
| title_sort | topotactic transformation of metal-organic frameworks to graphene-encapsulated transition-metal nitrides as efficient fenton-like catalysts |
| url | http://hdl.handle.net/20.500.11937/38393 |