Average Kullback-Leibler divergence for random finite sets

The paper deals with the fusion of multiobject information over a network of heterogeneous and geographically dispersed nodes with sensing, communication and processing capabilities. To exploit the benefits of sensor networks for multiobject estimation problems, like e.g. multitarget tracking and mu...

Full description

Bibliographic Details
Main Authors: Battistelli, G., Chisci, L., Fantacci, C., Farina, A., Vo, Ba-Ngu
Format: Conference Paper
Published: 2015
Online Access:http://hdl.handle.net/20.500.11937/37829
Description
Summary:The paper deals with the fusion of multiobject information over a network of heterogeneous and geographically dispersed nodes with sensing, communication and processing capabilities. To exploit the benefits of sensor networks for multiobject estimation problems, like e.g. multitarget tracking and multirobot SLAM (Simultaneous Localization and Mapping), a key issue to be addressed is how to consistently fuse (average) locally updated multiobject densities. In this paper we discuss the generalization of Kullback-Leibler average, originally conceived for single-object densities (i.e. probability density functions) to (both unlabeled and labeled) multiobject densities. Then, with a view to develop scalable and reliable distributed multiobject estimation algorithms, we review approaches to iteratively compute, in each node of the network, the collective multiobject average via scalable and neighborwise computations.