Distribution of Carbon Nanotube Sizes from Adsorption Measurements and Computer Simulation
The method for the evaluation of the distribution of carbon nanotube sizes from the static adsorption measurements and computer simulation of nitrogen at 77 K is developed. We obtain the condensation/ evaporation pressure as a function of pore size of a cylindrical carbon tube using Gauge Cell Mon...
| Main Authors: | , , , |
|---|---|
| Format: | Journal Article |
| Published: |
American Chemical Society
2005
|
| Online Access: | http://hdl.handle.net/20.500.11937/37511 |
| _version_ | 1848755069021847552 |
|---|---|
| author | Kowalczyk, Poitr Holyst, R. Tanaka, H. Kaneko, K. |
| author_facet | Kowalczyk, Poitr Holyst, R. Tanaka, H. Kaneko, K. |
| author_sort | Kowalczyk, Poitr |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | The method for the evaluation of the distribution of carbon nanotube sizes from the static adsorption measurements and computer simulation of nitrogen at 77 K is developed. We obtain the condensation/ evaporation pressure as a function of pore size of a cylindrical carbon tube using Gauge Cell Monte Carlo Simulation (Gauge Cell MC). To obtain the analytical form of the relationships mentioned above we use Derjaguin-Broekhoff-deBoer theory. Finally, the pore size distribution (PSD) of the single-walled carbon nanohorns (SWNHs) is determined from a single nitrogen adsorption isotherm measured at 77 K. We neglect the conical part of an isolated SWNH tube and assume a structureless wall of a carbon nanotube. We find that the distribution of SWNH sizes is broad (internal pore radii varied in the range 1.0-3.6 nm with the maximum at 1.3 nm). Our method can be used for the determination of the pore size distribution of the other tubular carbon materials, like, for example, multiwalled or double-walled carbon nanotubes. Besides the applicable aspect of the current work the deep insight into the problem of capillary condensation/evaporation in confined carbon cylindrical geometry is presented. As a result, the critical pore radius in structureless single-walled carbon tubes is determined as being equal to three nitrogen collision diameters. Below that size the adsorption-desorption isotherm is reversible (i.e., supercritical in nature). We show that the classical static adsorption measurements combined with the proper modeling of the capillary condensation/evaporation phenomena is a powerful method that can be applied for the determination of the distribution of nanotube sizes. |
| first_indexed | 2025-11-14T08:50:26Z |
| format | Journal Article |
| id | curtin-20.500.11937-37511 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T08:50:26Z |
| publishDate | 2005 |
| publisher | American Chemical Society |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-375112017-09-13T13:42:27Z Distribution of Carbon Nanotube Sizes from Adsorption Measurements and Computer Simulation Kowalczyk, Poitr Holyst, R. Tanaka, H. Kaneko, K. The method for the evaluation of the distribution of carbon nanotube sizes from the static adsorption measurements and computer simulation of nitrogen at 77 K is developed. We obtain the condensation/ evaporation pressure as a function of pore size of a cylindrical carbon tube using Gauge Cell Monte Carlo Simulation (Gauge Cell MC). To obtain the analytical form of the relationships mentioned above we use Derjaguin-Broekhoff-deBoer theory. Finally, the pore size distribution (PSD) of the single-walled carbon nanohorns (SWNHs) is determined from a single nitrogen adsorption isotherm measured at 77 K. We neglect the conical part of an isolated SWNH tube and assume a structureless wall of a carbon nanotube. We find that the distribution of SWNH sizes is broad (internal pore radii varied in the range 1.0-3.6 nm with the maximum at 1.3 nm). Our method can be used for the determination of the pore size distribution of the other tubular carbon materials, like, for example, multiwalled or double-walled carbon nanotubes. Besides the applicable aspect of the current work the deep insight into the problem of capillary condensation/evaporation in confined carbon cylindrical geometry is presented. As a result, the critical pore radius in structureless single-walled carbon tubes is determined as being equal to three nitrogen collision diameters. Below that size the adsorption-desorption isotherm is reversible (i.e., supercritical in nature). We show that the classical static adsorption measurements combined with the proper modeling of the capillary condensation/evaporation phenomena is a powerful method that can be applied for the determination of the distribution of nanotube sizes. 2005 Journal Article http://hdl.handle.net/20.500.11937/37511 10.1021/jp0520749 American Chemical Society restricted |
| spellingShingle | Kowalczyk, Poitr Holyst, R. Tanaka, H. Kaneko, K. Distribution of Carbon Nanotube Sizes from Adsorption Measurements and Computer Simulation |
| title | Distribution of Carbon Nanotube Sizes from Adsorption Measurements and Computer Simulation |
| title_full | Distribution of Carbon Nanotube Sizes from Adsorption Measurements and Computer Simulation |
| title_fullStr | Distribution of Carbon Nanotube Sizes from Adsorption Measurements and Computer Simulation |
| title_full_unstemmed | Distribution of Carbon Nanotube Sizes from Adsorption Measurements and Computer Simulation |
| title_short | Distribution of Carbon Nanotube Sizes from Adsorption Measurements and Computer Simulation |
| title_sort | distribution of carbon nanotube sizes from adsorption measurements and computer simulation |
| url | http://hdl.handle.net/20.500.11937/37511 |