The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system
The wheat tan spot fungus (Pyrenophora tritici-repentis) produces a well-characterized host-selective toxin (HST) known as Ptr ToxA, which induces necrosis in genotypes that harbor the Tsn1 gene on chromosome 5B. In previous work, we showed that the Stagonospora nodorum isolate Sn2000 produces at le...
| Main Authors: | Liu, Z., Friesen, T., Ling, H., Meinhardt, S., Oliver, Richard, Rasmussen, J., Faris, J. |
|---|---|
| Format: | Journal Article |
| Published: |
2006
|
| Online Access: | http://hdl.handle.net/20.500.11937/37482 |
Similar Items
Evaluating the importance of the tan spot ToxA–Tsn1 interaction in Australian wheat varieties
by: See, Pao Theen, et al.
Published: (2018)
by: See, Pao Theen, et al.
Published: (2018)
Prevalence of ToxA-sensitive alleles of the wheat gene Tsn1 in Australian and Chinese wheat cultivars
by: Oliver, Richard, et al.
Published: (2009)
by: Oliver, Richard, et al.
Published: (2009)
Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum-wheat pathosystem
by: Gao, Y., et al.
Published: (2015)
by: Gao, Y., et al.
Published: (2015)
Generation of a ToxA knockout strain of the wheat tan spot pathogen Pyrenophora tritici-repentis
by: Moffat, Caroline, et al.
Published: (2014)
by: Moffat, Caroline, et al.
Published: (2014)
Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
Quantitative variation in effector activity of ToxA isoforms from Stagonospora nodorum and Pyrenophora tritici-repentis
by: Tan, Kar-Chun, et al.
Published: (2012)
by: Tan, Kar-Chun, et al.
Published: (2012)
Prevalence and importance of sensitivity to Stagonospora nodorum necrotrophic effector SnTox3 in current Western Australian wheat cultivars.
by: Lichtenzveig, Judith, et al.
Published: (2011)
by: Lichtenzveig, Judith, et al.
Published: (2011)
Quantitative disease resistance assessment by real-time PCR using the Stagonospora nodorum wheat pathosystem as a model
by: Oliver, Richard, et al.
Published: (2008)
by: Oliver, Richard, et al.
Published: (2008)
A functional genomics approach to dissect the mode of action of the Stagonospora nodorum effector protein SnToxA in wheat
by: Vincent, D., et al.
Published: (2011)
by: Vincent, D., et al.
Published: (2011)
The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1
by: Liu, Z., et al.
Published: (2012)
by: Liu, Z., et al.
Published: (2012)
Characterization of the interaction of a novel Stagonospora nodorum host-selective toxin with a wheat susceptibility gene
by: Friesen, T., et al.
Published: (2008)
by: Friesen, T., et al.
Published: (2008)
The utilisation of di/tri peptides by Stagonospora nodorum is dispensable for wheat infection
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Functional characterisation of glyoxalase I from the fungal wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume blotch)
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
δ-Aminolevulinic acid synthesis is required for virulence of the wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
Dissecting the role of G-protein signalling in primary metabolism in the wheat pathogen Stagonospora nodorum
by: Gummer, J., et al.
Published: (2013)
by: Gummer, J., et al.
Published: (2013)
A metabolomic approach to dissecting osmotic stress in the wheat pathogen Stagonospora nodorum
by: Lowe, R., et al.
Published: (2008)
by: Lowe, R., et al.
Published: (2008)
Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2005)
by: Solomon, P., et al.
Published: (2005)
Dothideomycete-plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum
by: Hane, J., et al.
Published: (2007)
by: Hane, J., et al.
Published: (2007)
The Disruption of a Gα Subunit Sheds New Light on the Pathogenicity of Stagonospora nodorum on Wheat
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Stagonospora nodorum: From pathology to genomics and host resistance
by: Oliver, Richard, et al.
Published: (2012)
by: Oliver, Richard, et al.
Published: (2012)
Ubiquity of ToxA and absence of ToxB in Australian populationsof Pyrenophora tritici-repentis
by: Antoni, E., et al.
Published: (2010)
by: Antoni, E., et al.
Published: (2010)
Genetic analysis of wheat sensitivity to the ToxB fungal effector from Pyrenophora tritici-repentis, the causal agent of tan spot
by: Corsi, B., et al.
Published: (2020)
by: Corsi, B., et al.
Published: (2020)
Diseases affecting wheat: tan spot
by: Moffat, Caroline, et al.
Published: (2018)
by: Moffat, Caroline, et al.
Published: (2018)
A comparative analysis of the heterotrimeric G-protein G[alpha], G[beta] and G[gamma] subunits in the wheat pathogen Stagonospora nodorum
by: Gummer, J., et al.
Published: (2012)
by: Gummer, J., et al.
Published: (2012)
A revised nomenclature for ToxA haplotypes across multiple fungal species
by: Aboukhaddour, Reem, et al.
Published: (2023)
by: Aboukhaddour, Reem, et al.
Published: (2023)
Vavilov wheat accessions provide useful sources of resistance to tan spot (syn. yellow spot) of wheat
by: Dinglasan, E., et al.
Published: (2018)
by: Dinglasan, E., et al.
Published: (2018)
Resequencing and comparative genomics of stagonospora nodorum: Sectional gene absence and effector discovery
by: Syme, Robert, et al.
Published: (2013)
by: Syme, Robert, et al.
Published: (2013)
Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography . and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum
by: Bringans, S., et al.
Published: (2009)
by: Bringans, S., et al.
Published: (2009)
SnTox3 Acts in Effector Triggered Susceptibility to Induce Disease on Wheat Carrying the Snn3 Gene
by: Liu, Z., et al.
Published: (2009)
by: Liu, Z., et al.
Published: (2009)
The Transcription Factor StuA Regulates Central Carbon Metabolism,Mycotoxin Production, and Effector Gene Expression in the WheatPathogen Stagonospora nodorum
by: Ip-Cho, S., et al.
Published: (2010)
by: Ip-Cho, S., et al.
Published: (2010)
Pathogenicity of Stagonospora nodorum requires malate synthase
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Genomic distribution of a novel Pyrenophora tritici-repentis ToxA insertion element
by: Moolhuijzen, Paula, et al.
Published: (2018)
by: Moolhuijzen, Paula, et al.
Published: (2018)
Transcriptome analysis of Stagonospora nodorum: gene models, effectors, metabolism and pantothenate dispensability
by: Ipcho, S., et al.
Published: (2011)
by: Ipcho, S., et al.
Published: (2011)
Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum
by: Lowe, R., et al.
Published: (2009)
by: Lowe, R., et al.
Published: (2009)
Heterologous Expression of the Pyrenophora tritici-repentis Effector Proteins ToxA and ToxB, and the Prevalence of Effector Sensitivity in Australian Cereal Crops
by: Moffat, Caroline, et al.
Published: (2019)
by: Moffat, Caroline, et al.
Published: (2019)
Exploration of wheat and pathogen transcriptomes during tan spot infection
by: Moolhuijzen, Paula, et al.
Published: (2018)
by: Moolhuijzen, Paula, et al.
Published: (2018)
Malayamycin, a new streptomycete antifungal compound, specifically inhibits sporulation of Stagonospora nodorum (Berk) Castell and Germano, the cause of wheat glume blotch disease
by: Li, W., et al.
Published: (2008)
by: Li, W., et al.
Published: (2008)
Genetic characterization of adult-plant resistance to tan spot (syn, yellow spot) in wheat
by: Dinglasan, E.G., et al.
Published: (2021)
by: Dinglasan, E.G., et al.
Published: (2021)
Assessing European wheat sensitivities to parastagonospora nodorum necrotrophic effectors and fine-mapping the Snn3-B1 locus conferring sensitivity to the effector SnTox3
by: Downie, R., et al.
Published: (2018)
by: Downie, R., et al.
Published: (2018)
Similar Items
-
Evaluating the importance of the tan spot ToxA–Tsn1 interaction in Australian wheat varieties
by: See, Pao Theen, et al.
Published: (2018) -
Prevalence of ToxA-sensitive alleles of the wheat gene Tsn1 in Australian and Chinese wheat cultivars
by: Oliver, Richard, et al.
Published: (2009) -
Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum-wheat pathosystem
by: Gao, Y., et al.
Published: (2015) -
Generation of a ToxA knockout strain of the wheat tan spot pathogen Pyrenophora tritici-repentis
by: Moffat, Caroline, et al.
Published: (2014) -
Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat
by: Solomon, P., et al.
Published: (2006)