Reduced Graphene Oxide for Catalytic Oxidation of Aqueous Organic Pollutants

We discovered that chemically reduced graphene oxide, with an ID/IG >1.4 (defective to graphite) can effectively activate peroxymonosulfate (PMS) to produce active sulfate radicals. The produced sulfate radicals (SO4•—) are powerful oxidizing species with a high oxidative potential (2.5–3.1 vs 2....

Full description

Bibliographic Details
Main Authors: Sun, Hongqi, Liu, Shi Zhen, Zhou, Guanliang, Ang, Ming, Tade, Moses, Wang, Shaobin
Format: Journal Article
Published: American Chemical Society 2012
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/37139
Description
Summary:We discovered that chemically reduced graphene oxide, with an ID/IG >1.4 (defective to graphite) can effectively activate peroxymonosulfate (PMS) to produce active sulfate radicals. The produced sulfate radicals (SO4•—) are powerful oxidizing species with a high oxidative potential (2.5–3.1 vs 2.7 V of hydroxyl radicals), and can effectively decompose various aqueous contaminants. Graphene demonstrated a higher activity than several carbon allotropes, such as activated carbon (AC), graphite powder (GP), graphene oxide (GO), and multiwall carbon nanotube (MWCNT). Kinetic study of graphene catalyzed activation of PMS was carried out. It was shown that graphene catalysis is superior to that on transition metal oxide (Co3O4) in degradation of phenol, 2,4-dichlorophenol (DCP) and a dye (methylene blue, MB) in water, therefore providing a novel strategy for environmental remediation.