| Summary: | PPP-RTK is integer ambiguity resolution-enabled precise point positioning. In this contribution, we present the principles of PPP-RTK, together with a review of different mechanizations that have been proposed in the literature. By application of S-system theory, the estimable parameters of the different methods are identified and compared. Their interpretation is essential for gaining a proper insight into PPP-RTK in general, and into the role of the PPP-RTK corrections in particular. We show that PPP-RTK is a relative technique for which the ‘single-receiver user’ integer ambiguities are in fact double-differenced ambiguities. We determine the transformational links between the different methods and their PPP-RTK corrections, thereby showing how different PPP-RTK methods can be mixed between network and users. We also present and discuss four different estimators of the PPP-RTK corrections. It is shown how they apply to the different PPP-RTK models, as well as why some of the proposed estimation methods cannot be accepted as PPP-RTK proper. We determine analytical expressions for the variance matrices of the ambiguity-fixed and ambiguity-float PPP-RTK corrections. This gives important insight into their precision, as well as allows us to discuss which parts of the PPP-RTK correction variance matrix are essential for the user and which are not.
|