The characterization of Abelson helper integration site-1 in skeletal muscle and its links to the metabolic syndrome

The human Abelson helper integration site-1 (AHI1) gene is associated with both neurologic and hematologic disorders; however, it is also located in a chromosomal region linked to metabolic syndrome phenotypes and was identified as a type 2 diabetes mellitus susceptibility gene from a genomewide ass...

Full description

Bibliographic Details
Main Authors: Prior, M., Foletta, V., Jowett, J., Segal, D., Carless, M., Curran, J., Dyer, T., Moses, Eric, McAinch, A., Konstantopoulos, N., Bozaoglu, K., Collier, G., Cameron-Smith, D., Blangero, J., Walder, K.
Format: Journal Article
Published: W.B. Saunders Co. 2010
Online Access:http://hdl.handle.net/20.500.11937/36588
Description
Summary:The human Abelson helper integration site-1 (AHI1) gene is associated with both neurologic and hematologic disorders; however, it is also located in a chromosomal region linked to metabolic syndrome phenotypes and was identified as a type 2 diabetes mellitus susceptibility gene from a genomewide association study. To further define a possible role in type 2 diabetes mellitus development, AHI1 messenger RNA expression levels were investigated in a range of tissues and found to be highly expressed in skeletal muscle as well as displaying elevated levels in brain regions and gonad tissues. Further analysis in a rodent polygenic animal model of obesity and type 2 diabetes mellitus identified increased Ahi-1 messenger RNA levels in red gastrocnemius muscle from fasted impaired glucose-tolerant and diabetic rodents compared with healthy animals (P < .002). Moreover, elevated gene expression levels were confirmed in skeletal muscle from fasted obese and type 2 diabetes mellitus human subjects (P < .02). RNAi-mediated suppression of Ahi-1 resulted in increased glucose transport in rat L6 myotubes in both the basal and insulin-stimulated states (P < .01). Finally, single nucleotide polymorphism association studies identified 2 novel AHI1 genetic variants linked with fasting blood glucose levels in Mexican American subjects (P < .037). These findings indicate a novel role for AHI1 in skeletal muscle and identify additional genetic links with metabolic syndrome phenotypes suggesting an involvement of AHI1 in the maintenance of glucose homeostasis and type 2 diabetes mellitus progression. © 2010 Elsevier Inc. All rights reserved.