Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3−δ as a bi-functional electrode material for solid oxide fuel cells
In this study, we investigate a cobalt-free titanium-doped perovskite oxide with the nominal composition of Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3−δ (BSFCuTi) as a potential electrode material for intermediate temperature solid oxide fuel cells (IT-SOFCs). In comparison to Ba0.5Sr0.5Fe0.9Cu0.1O3−δ, BSFCuTi exh...
| Main Authors: | Yang, G., Shen, J., Chen, Y., Tadé, M., Shao, Zongping |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier
2015
|
| Online Access: | http://hdl.handle.net/20.500.11937/36348 |
Similar Items
Ce0.9Gd0.1O2−δ membranes coated with porous Ba0.5Sr0.5Co0.8Fe0.2O3−δ for oxygen separation
by: Zhang, C., et al.
Published: (2015)
by: Zhang, C., et al.
Published: (2015)
Electrical Characterization of Ca1-Xaxcu3ti4o12 (A = Sr or Ba) With X = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 Ceramics
by: Mustafa, Mazni
Published: (2008)
by: Mustafa, Mazni
Published: (2008)
Cobalt-free SrNbxFe1−xO3−δ (x = 0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells
by: Jiang, S., et al.
Published: (2015)
by: Jiang, S., et al.
Published: (2015)
Fundamental Understanding and Application of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Perovskite in Energy Storage and Conversion: Past, Present, and Future
by: Xu, Xiaomin, et al.
Published: (2021)
by: Xu, Xiaomin, et al.
Published: (2021)
Surface exchange and bulk diffusion properties of Ba0.5Sr 0.5Co0.8Fe0.2O3-d mixed conductor
by: Chen, D., et al.
Published: (2011)
by: Chen, D., et al.
Published: (2011)
Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3-d + Sm0.2Ce0.8O1.9 composite cathode
by: Wang, K., et al.
Published: (2008)
by: Wang, K., et al.
Published: (2008)
Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of Ba0.5Sr0.5Co0.5Fe0.5O3-d membranes
by: Gao, D., et al.
Published: (2011)
by: Gao, D., et al.
Published: (2011)
The influence of impurity ions on the permeation and oxygen reduction properties of Ba0.5Sr0.5Co0.8Fe0.2O3-[delta] perovskite
by: Chen, Y., et al.
Published: (2014)
by: Chen, Y., et al.
Published: (2014)
Ba0.5Sr0.5Co0.8Fe0.2O3-delta ceramic hollow-fiber membranes for oxygen permeation
by: Liu, Shaomin, et al.
Published: (2006)
by: Liu, Shaomin, et al.
Published: (2006)
La0.6Sr0.4Co0.2Fe0.8O3-d Hollow Fibre Membrane Performance Improvement by Coating of Ba0.5Sr0.5Co0.9Nb0.1O3-d Porous Layer
by: Han, D., et al.
Published: (2014)
by: Han, D., et al.
Published: (2014)
In situ templating synthesis of conic Ba0.5Sr 0.5Co0.8Fe0.2O3-d perovskite at elevated temperature
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
Oxygen permeation properties of novel BaCo0.85Bi0.05Zr0.1O3−δ hollow fibre membrane
by: Qiu, Z., et al.
Published: (2018)
by: Qiu, Z., et al.
Published: (2018)
Performance variability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode on proton-conducting electrolyte SOFCs with Ag and Au current collectors
by: Wan, T., et al.
Published: (2017)
by: Wan, T., et al.
Published: (2017)
Evaluation of the CO2 tolerant cathode for solid oxide fuel cells: Praseodymium oxysulfates/Ba0.5Sr0.5Co0.8Fe0.2O3-δ
by: Yang, T., et al.
Published: (2018)
by: Yang, T., et al.
Published: (2018)
Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
Properties and performance of A-site deficient (Ba0.5Sr0.5)1-xCo0.8Fe0.2O3-d for oxygen permeating membrane
by: Ge, L., et al.
Published: (2007)
by: Ge, L., et al.
Published: (2007)
Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-d perovskite as oxygen semi-permeable membrane
by: Zeng, P., et al.
Published: (2007)
by: Zeng, P., et al.
Published: (2007)
Further performance improvement of Ba0.5Sr0.5Co0.8Fe0.2O3-8 pervoskite membranes for air separation
by: Chen, Z., et al.
Published: (2009)
by: Chen, Z., et al.
Published: (2009)
(La0.5-xPrBa0.5)(Mn0.5Ti0.5)O3 Perovskite: microstructural and electrical properties
by: Shaari, Abdul Halim, et al.
Published: (2008)
by: Shaari, Abdul Halim, et al.
Published: (2008)
Toward Enhanced Oxygen Evolution on Perovskite Oxides Synthesized from Different Approaches: A Case Study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ
by: Xu, X., et al.
Published: (2016)
by: Xu, X., et al.
Published: (2016)
Electrochemical performance and effect of moisture on Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3-δ oxide as a promising electrode for proton-conducting solid oxide fuel cells
by: Zhang, Y., et al.
Published: (2019)
by: Zhang, Y., et al.
Published: (2019)
Silver-modified Ba0.5Sr0.5Co0.8Fe 0.2O3-d as cathodes for a proton conducting solid-oxide fuel cell
by: Lin, Y., et al.
Published: (2010)
by: Lin, Y., et al.
Published: (2010)
Enhanced electrochemical performance, water storage capability and coking resistance of a Ni+BaZr0.1Ce0.7Y0.1Yb0.1O3−δ anode for solid oxide fuel cells operating on ethanol
by: Wang, W., et al.
Published: (2015)
by: Wang, W., et al.
Published: (2015)
Electrochemical Performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ in Symmetric Cells With Sm0.2Ce0.8O1.9 Electrolyte for Nitric Oxide Reduction Reaction
by: Shi, Huangang, et al.
Published: (2020)
by: Shi, Huangang, et al.
Published: (2020)
Effect of foreign oxides on the phase structure, sintering and transport properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as ceramic membranes for oxygen separation
by: Ran, R., et al.
Published: (2011)
by: Ran, R., et al.
Published: (2011)
Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-d cathodes prepared via electroless deposition
by: Zhou, W., et al.
Published: (2008)
by: Zhou, W., et al.
Published: (2008)
Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1-xCo0.8Fe0.2O3-d (x > 0) perovskite as a solid-oxide fuel cell cathode
by: Zhou, W., et al.
Published: (2008)
by: Zhou, W., et al.
Published: (2008)
Synthesis of bulk FeTe1−xSex (x = 0.1−0.5) at ambient pressure
by: Lim, Edmund Hua Hang, et al.
Published: (2015)
by: Lim, Edmund Hua Hang, et al.
Published: (2015)
Displacement -0, 0.5
by: Ansted, Darryn
Published: (2013)
by: Ansted, Darryn
Published: (2013)
Significant impact of the current collection material and method on the performance of Ba0.5Sr0.5Co0.8Fe 0.2O3-d electrodes in solid oxide fuel cells
by: Guo, Y., et al.
Published: (2011)
by: Guo, Y., et al.
Published: (2011)
Phase formation of REBa2Cu3O7−δ (RE: Y0.5Gd0.5, Y0.5Nd0.5, Nd0.5Gd0.5) superconductors from nanopowders synthesised via co-precipitation
by: Wahid, Mohd Haniff, et al.
Published: (2012)
by: Wahid, Mohd Haniff, et al.
Published: (2012)
Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells: III. Ba0.5Sr0.5Co0.8Fe0.2O3-δ Electrodes
by: Chen, Kongfa, et al.
Published: (2014)
by: Chen, Kongfa, et al.
Published: (2014)
Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3-d electrode prepared by electroless deposition technique
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
New Ba0.5Sr0.5Co0.8Fe0.2O 3-d + Co3O4 composite electrode for IT-SOFCs with improved electrical conductivity and catalytic activity
by: Chen, D., et al.
Published: (2011)
by: Chen, D., et al.
Published: (2011)
Chromium deposition and poisoning at Ba0.5Sr0.5Co0.8Fe0.2O3 cathode of solid oxide fuel cells
by: Kim, Y., et al.
Published: (2011)
by: Kim, Y., et al.
Published: (2011)
A Comparative Structure and Performance Study of La1-xSrxCoO3-δ and La1-xSrxCo0.9Nb0.1O3-δ (x = 0.5, 0.7, 0.9, and 1.0) Oxygen Permeable Mixed Conductors
by: Zhao, J., et al.
Published: (2011)
by: Zhao, J., et al.
Published: (2011)
A top-down strategy for the synthesis of mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a cathode precursor for buffer layer-free deposition on stabilized zirconia electrolyte with a superior electrochemical performance
by: Su, C., et al.
Published: (2015)
by: Su, C., et al.
Published: (2015)
Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3-d oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells
by: Zhou, W., et al.
Published: (2008)
by: Zhou, W., et al.
Published: (2008)
Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-d as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell
by: Lin, Y., et al.
Published: (2008)
by: Lin, Y., et al.
Published: (2008)
Electrochemical contribution of silver current collector to oxygen reduction reaction over Ba0.5Sr0.5Co0.8Fe0.2O3Ld electrode on oxygen-ionic conducting electrolyte
by: Guo, Y., et al.
Published: (2012)
by: Guo, Y., et al.
Published: (2012)
Similar Items
-
Ce0.9Gd0.1O2−δ membranes coated with porous Ba0.5Sr0.5Co0.8Fe0.2O3−δ for oxygen separation
by: Zhang, C., et al.
Published: (2015) -
Electrical Characterization of Ca1-Xaxcu3ti4o12 (A = Sr or Ba) With X = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 Ceramics
by: Mustafa, Mazni
Published: (2008) -
Cobalt-free SrNbxFe1−xO3−δ (x = 0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells
by: Jiang, S., et al.
Published: (2015) -
Fundamental Understanding and Application of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Perovskite in Energy Storage and Conversion: Past, Present, and Future
by: Xu, Xiaomin, et al.
Published: (2021) -
Surface exchange and bulk diffusion properties of Ba0.5Sr 0.5Co0.8Fe0.2O3-d mixed conductor
by: Chen, D., et al.
Published: (2011)