Evaluation of pulsed laser deposited SrNb0.1Co0.9O3−δ thin films as promising cathodes for intermediate-temperature solid oxide fuel cells
SrNb0.1Co0.9O3−δ (SNC) thin films prepared on single-crystal yttria-stabilized zirconia (YSZ) electrolytes are evaluated as promising cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Geometrically well-defined polycrystalline SNC thin films with low surface roughness and high...
| Main Authors: | Chen, D., Chen, C., Gao, Y., Zhang, Z., Shao, Zongping, Ciucci, F. |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier
2015
|
| Online Access: | http://hdl.handle.net/20.500.11937/36012 |
Similar Items
Probing CO2 reaction mechanisms and effects on the SrNb0.1Co0.9−xFexO3−δ cathodes for solid oxide fuel cells
by: Zhu, Y., et al.
Published: (2015)
by: Zhu, Y., et al.
Published: (2015)
SrNb0.1Co0.7Fe0.2O3−δ Perovskite as a Next-Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution
by: Zhu, Y., et al.
Published: (2015)
by: Zhu, Y., et al.
Published: (2015)
High-performance SrNb0.1Co0.9-xFexO 3-d perovskite cathodes for low-temperature solid oxide fuel cells
by: Zhu, Y., et al.
Published: (2014)
by: Zhu, Y., et al.
Published: (2014)
Structural, electrical and electrochemical characterizations of SrNb0.1Co0.9O3-d as a cathode of solid oxide fuel cells operating below 600 �C
by: Zhou, W., et al.
Published: (2010)
by: Zhou, W., et al.
Published: (2010)
Evaluation of Ba0.6Sr0.4Co0.9Nb0.1O3-d mixed conductor as a cathode for intermediate-temperature oxygen-ionic solid-oxide fuel cells
by: Huang, C., et al.
Published: (2010)
by: Huang, C., et al.
Published: (2010)
A novel Ba0.6Sr0.4Co0.9Nb0.1O3-d cathode for protonic solid-oxide fuel cells
by: Lin, Y., et al.
Published: (2010)
by: Lin, Y., et al.
Published: (2010)
Cobalt-free polycrystalline Ba0.95La0.05FeO3−δ thin films as cathodes for intermediate-temperature solid oxide fuel cells
by: Chen, D., et al.
Published: (2014)
by: Chen, D., et al.
Published: (2014)
Influence of crystal structure on the electrochemical performance of A-site-deficient Sr1-sNb0.1Co0.9O3-dperovskite cathodes
by: Zhu, Y., et al.
Published: (2014)
by: Zhu, Y., et al.
Published: (2014)
Perovskite SrCo0.9Nb0.1O3−δ as an Anion-Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density
by: Zhu, L., et al.
Published: (2016)
by: Zhu, L., et al.
Published: (2016)
Computational and experimental analysis of Ba0.95La0.05FeO3-δ as a cathode material for solidoxide fuel cells
by: Chen, C., et al.
Published: (2014)
by: Chen, C., et al.
Published: (2014)
Evaluation of the CO2 Poisoning Effect on a Highly Active Cathode SrSc0.175Nb0.025Co0.8O3-δ in the Oxygen Reduction Reaction
by: Zhang, Y., et al.
Published: (2016)
by: Zhang, Y., et al.
Published: (2016)
Cobalt-free SrNbxFe1−xO3−δ (x = 0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells
by: Jiang, S., et al.
Published: (2015)
by: Jiang, S., et al.
Published: (2015)
SrCo0.8Ti0.1Ta0.1O3-δ perovskite: A new highly active and durable cathode material for intermediate-temperature solid oxide fuel cells
by: Gu, H., et al.
Published: (2021)
by: Gu, H., et al.
Published: (2021)
BaNb0.05Fe0.95O3−δ as a new oxygen reduction electrocatalyst for intermediate temperature solid oxide fuel cells
by: Dong, F., et al.
Published: (2013)
by: Dong, F., et al.
Published: (2013)
Optimization of BaxSr1-xCo0.9Nb0.1O3-8 perovskite as oxygen semi-permeable membranes by compositional tailoring
by: Zhao, J., et al.
Published: (2010)
by: Zhao, J., et al.
Published: (2010)
Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
Activation and deactivation kinetics of oxygen reduction over a la 0.8Sr0.2Sc0.1Mn0.9O3 cathode
by: Zheng, Y., et al.
Published: (2008)
by: Zheng, Y., et al.
Published: (2008)
Highly active and stable (La0.24Sr0.16Ba0.6)(CO0.5Fe0.44Nb0.06)O3- δ (LSBCFN) cathodes for solid oxide fuel cells prepared by a novel mixing synthesis method
by: Chen, X., et al.
Published: (2013)
by: Chen, X., et al.
Published: (2013)
Electrochemical performance and effect of moisture on Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3-δ oxide as a promising electrode for proton-conducting solid oxide fuel cells
by: Zhang, Y., et al.
Published: (2019)
by: Zhang, Y., et al.
Published: (2019)
SrCo0.9Ti0.1O3−δ As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance
by: Su, C., et al.
Published: (2015)
by: Su, C., et al.
Published: (2015)
Impregnated LaCo0.3Fe0.67Pd0.03O3-δ as a promising electrocatalyst for “symmetrical” intermediate-temperature solid oxide fuel cells
by: Shen, J., et al.
Published: (2016)
by: Shen, J., et al.
Published: (2016)
Enhanced Chromium Tolerance of La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode by BaO Infiltration
by: Chen, K., et al.
Published: (2015)
by: Chen, K., et al.
Published: (2015)
Preparation and oxygen permeation properties of SrCo0.9Nb0.1O3-d hollow fibre membranes
by: Meng, B., et al.
Published: (2011)
by: Meng, B., et al.
Published: (2011)
Cyclic polarization enhances the operating stability of La0.57Sr0.38Co0.18Fe0.72Nb0.1O3-δ oxygen electrode of reversible solid oxide cells
by: He, Z., et al.
Published: (2018)
by: He, Z., et al.
Published: (2018)
Ce0.9Gd0.1O2−δ membranes coated with porous Ba0.5Sr0.5Co0.8Fe0.2O3−δ for oxygen separation
by: Zhang, C., et al.
Published: (2015)
by: Zhang, C., et al.
Published: (2015)
Evaluation of SrSc0.175Nb0.025Co0.8O3-δ perovskite as a cathode for proton-conducting solid oxide fuel cells: The possibility of in situ creating protonic conductivity and electrochemical performance
by: Zhu, A., et al.
Published: (2018)
by: Zhu, A., et al.
Published: (2018)
A Comparative Structure and Performance Study of La1-xSrxCoO3-δ and La1-xSrxCo0.9Nb0.1O3-δ (x = 0.5, 0.7, 0.9, and 1.0) Oxygen Permeable Mixed Conductors
by: Zhao, J., et al.
Published: (2011)
by: Zhao, J., et al.
Published: (2011)
Oxygen permeation behavior through Ce0.9Gd0.1O2−δ membranes electronically short-circuited by dual-phase Ce0.9Gd0.1O2−δ–Ag decoration
by: Zhang, C., et al.
Published: (2015)
by: Zhang, C., et al.
Published: (2015)
Evaluation of (Ba 0.5Sr 0.5) 0.85Gd 0.15Co 0.8Fe 0.2O 3-[delta] cathode for intermediate temperature solid oxide fuel cell
by: Li, Z., et al.
Published: (2012)
by: Li, Z., et al.
Published: (2012)
A comparative study of La0.8Sr0.2MnO3 and La0.8Sr0.2Sc0.1Mn0.9O3 as cathode materials of single-chamber SOFCs operating on a methane-air mixture
by: Zhang, C., et al.
Published: (2009)
by: Zhang, C., et al.
Published: (2009)
Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3−δ as a bi-functional electrode material for solid oxide fuel cells
by: Yang, G., et al.
Published: (2015)
by: Yang, G., et al.
Published: (2015)
(La0.8Sr0.2)0.9MnO3–Gd0.2Ce0.8O1.9 composite cathodes prepared from (Gd, Ce)(NO3) x -modified (La0.8Sr0.2)0.9MnO3 for intermediate-temperature solid oxide fuel cells
by: Leng, Y.J., et al.
Published: (2006)
by: Leng, Y.J., et al.
Published: (2006)
SrCo0.9Sc0.1O3-8 perovskite hollow fibre membranes for air separtion at intermediate temperatures
by: Meng, B., et al.
Published: (2009)
by: Meng, B., et al.
Published: (2009)
Effect of temperature on the chromium deposition and poisoning of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells
by: Wang, C., et al.
Published: (2014)
by: Wang, C., et al.
Published: (2014)
A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3−δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells
by: Ai, Na, et al.
Published: (2017)
by: Ai, Na, et al.
Published: (2017)
Combined Cr and S poisoning of La0.8Sr0.2MnO3-δ (LSM) cathode of solid oxide fuel cells
by: Wang, Cheng Cheng, et al.
Published: (2019)
by: Wang, Cheng Cheng, et al.
Published: (2019)
La0.6Sr0.4Co0.2Fe0.8O3-d Hollow Fibre Membrane Performance Improvement by Coating of Ba0.5Sr0.5Co0.9Nb0.1O3-d Porous Layer
by: Han, D., et al.
Published: (2014)
by: Han, D., et al.
Published: (2014)
Effect of SO2 Poisoning on the Electrochemical Activity of La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes of Solid Oxide Fuel Cells
by: Wang, C., et al.
Published: (2017)
by: Wang, C., et al.
Published: (2017)
Chromium deposition and poisoning in dry and humidified air at (La0.8Sr0.2)0.9MnO3+d cathodes of solid oxide fuel cells
by: Chen, X., et al.
Published: (2010)
by: Chen, X., et al.
Published: (2010)
Microstructural evolution in B-site Mg-substituted La0.9Sr0.1GaO3−δ oxide solid solutions
by: Azad, Abdul-Majeed, et al.
Published: (2000)
by: Azad, Abdul-Majeed, et al.
Published: (2000)
Similar Items
-
Probing CO2 reaction mechanisms and effects on the SrNb0.1Co0.9−xFexO3−δ cathodes for solid oxide fuel cells
by: Zhu, Y., et al.
Published: (2015) -
SrNb0.1Co0.7Fe0.2O3−δ Perovskite as a Next-Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution
by: Zhu, Y., et al.
Published: (2015) -
High-performance SrNb0.1Co0.9-xFexO 3-d perovskite cathodes for low-temperature solid oxide fuel cells
by: Zhu, Y., et al.
Published: (2014) -
Structural, electrical and electrochemical characterizations of SrNb0.1Co0.9O3-d as a cathode of solid oxide fuel cells operating below 600 �C
by: Zhou, W., et al.
Published: (2010) -
Evaluation of Ba0.6Sr0.4Co0.9Nb0.1O3-d mixed conductor as a cathode for intermediate-temperature oxygen-ionic solid-oxide fuel cells
by: Huang, C., et al.
Published: (2010)