An Improved P300 Extraction using ICA-R for P300-BCI Speller

In this study, a new P300 extraction method is investigated by using a form of constrained independent component analysis (cICA) algorithm called one-unit ICA-with-reference (ICA-R) which extracts the P300 signal based on its temporal information. The main advantage of this method compared to the ex...

Full description

Bibliographic Details
Main Authors: Lee, Wee Lih, Tan, Tele, Leung, Yee Hong
Other Authors: Not known
Format: Conference Paper
Published: Produced for IEEE EMBS by The Printing House, Inc. 2013
Online Access:http://hdl.handle.net/20.500.11937/35888
Description
Summary:In this study, a new P300 extraction method is investigated by using a form of constrained independent component analysis (cICA) algorithm called one-unit ICA-with-reference (ICA-R) which extracts the P300 signal based on its temporal information. The main advantage of this method compared to the existing ICA-based method is that the desired P300 signal is extracted directly without requiring partial or full signal decomposition and any post-processing on the outcome of the ICA before the P300 signal can be obtained. Since only one IC is extracted, the method is computationally more efficient for real-time P300 BCI applications. In our study, when tested on the BCI competition 2003 dataset IIb, the current state-of-the-art performance is maintained by using the one-unit ICA-R. Besides that, the ability of the method to visualize P300 signals at the single-trial level also suggests it has potential applications in other types of ERP studies.