| Summary: | The influence of cooling method and drilling parameters on hole production has been investigated experimentally and analytically by measuring the hole quality. A three-level, three-parameter experiment was conducted using design-of-experiment methodology. The three levels of independent input parameters were: for cooling method—flood drilling, minimum quantity lubrication (MQL) drilling and cryogenic drilling; for feed rate—0.2, 0.3 and 0.4 mm/rev; and for cutting speed—60, 75 and 100 m/min. The selected work and tool materials were aluminium 6061-6T and high speed steel (HSS), respectively. The measured output parameters were the three most widely used quality characteristics of drilled holes - diameter error, circularity and surface roughness. The results were analysed applying three methods: Pareto ANOVA, Taguchi method and traditional analysis. The findings revealed that the cooling method has a significant effect on diameter error (contribution ratio 88.27%), moderate effect on surface roughness (contribution ratio 41.74%) and relatively small effect on circularity (contribution ratio 23.64%). The best results for the dimensional accuracy and surface roughness were achieved by MQL drilling. Cryogenic drilling produced the best circularity results; however, in terms of dimensional accuracy and surface roughness it was the worst.
|