Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater
In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characteriza...
| Main Authors: | , |
|---|---|
| Format: | Journal Article |
| Published: |
2012
|
| Online Access: | http://hdl.handle.net/20.500.11937/35522 |
| _version_ | 1848754519204167680 |
|---|---|
| author | Zheng, X. Croue, Jean-Philippe |
| author_facet | Zheng, X. Croue, Jean-Philippe |
| author_sort | Zheng, X. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. |
| first_indexed | 2025-11-14T08:41:42Z |
| format | Journal Article |
| id | curtin-20.500.11937-35522 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T08:41:42Z |
| publishDate | 2012 |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-355222017-09-13T15:26:49Z Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater Zheng, X. Croue, Jean-Philippe In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. 2012 Journal Article http://hdl.handle.net/20.500.11937/35522 10.2166/wrd.2012.021 unknown |
| spellingShingle | Zheng, X. Croue, Jean-Philippe Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater |
| title | Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater |
| title_full | Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater |
| title_fullStr | Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater |
| title_full_unstemmed | Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater |
| title_short | Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater |
| title_sort | contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater |
| url | http://hdl.handle.net/20.500.11937/35522 |