CO(1-0) detection of molecular gas in the massive Spiderweb Galaxy (z = 2)

The high-redshift radio galaxy MRC 1138−262 (‘Spiderweb Galaxy’; z = 2.16) is one of the most massive systems in the early Universe and surrounded by a dense ‘web’ of proto-cluster galaxies. Using the Australia Telescope Compact Array, we detected CO(1–0) emission from cold molecular gas – the raw i...

Full description

Bibliographic Details
Main Authors: Emonts, B., Feain, I., Röttgering, H., Miley, G., Seymour, Nick, Norris, R., Carilli, C., Villar-Martín, M., Mao, M., Sadler, E., Ekers, R., van Moorsel, G., Ivison, R., Pentericci, L., Tadhunter, C., Saikia, D.
Format: Journal Article
Published: 2013
Online Access:http://hdl.handle.net/20.500.11937/34978
_version_ 1848754370916646912
author Emonts, B.
Feain, I.
Röttgering, H.
Miley, G.
Seymour, Nick
Norris, R.
Carilli, C.
Villar-Martín, M.
Mao, M.
Sadler, E.
Ekers, R.
van Moorsel, G.
Ivison, R.
Pentericci, L.
Tadhunter, C.
Saikia, D.
author_facet Emonts, B.
Feain, I.
Röttgering, H.
Miley, G.
Seymour, Nick
Norris, R.
Carilli, C.
Villar-Martín, M.
Mao, M.
Sadler, E.
Ekers, R.
van Moorsel, G.
Ivison, R.
Pentericci, L.
Tadhunter, C.
Saikia, D.
author_sort Emonts, B.
building Curtin Institutional Repository
collection Online Access
description The high-redshift radio galaxy MRC 1138−262 (‘Spiderweb Galaxy’; z = 2.16) is one of the most massive systems in the early Universe and surrounded by a dense ‘web’ of proto-cluster galaxies. Using the Australia Telescope Compact Array, we detected CO(1–0) emission from cold molecular gas – the raw ingredient for star formation – across the Spiderweb Galaxy. We infer a molecular gas mass of MH2 = 6 × 1010 M☉ (for MH2/L′CO = 0.8). While the bulk of the molecular gas coincides with the central radio galaxy, there are indications that a substantial fraction of this gas is associated with satellite galaxies or spread across the intergalactic medium on scales of tens of kpc. In addition, we tentatively detect CO(1–0) in the star-forming proto-cluster galaxy HAE 229, 250 kpc to the West. Our observations are consistent with the fact that the Spiderweb Galaxy is building up its stellar mass through a massive burst of widespread star formation. At maximum star formation efficiency, the molecular gas will be able to sustain the current star formation rate (SFR ≈ 1400 M☉ yr−1, as traced by Seymour et al.) for about 40 Myr. This is similar to the estimated typical lifetime of a major starburst event in infrared luminous merger systems.
first_indexed 2025-11-14T08:39:20Z
format Journal Article
id curtin-20.500.11937-34978
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T08:39:20Z
publishDate 2013
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-349782017-09-13T15:29:11Z CO(1-0) detection of molecular gas in the massive Spiderweb Galaxy (z = 2) Emonts, B. Feain, I. Röttgering, H. Miley, G. Seymour, Nick Norris, R. Carilli, C. Villar-Martín, M. Mao, M. Sadler, E. Ekers, R. van Moorsel, G. Ivison, R. Pentericci, L. Tadhunter, C. Saikia, D. The high-redshift radio galaxy MRC 1138−262 (‘Spiderweb Galaxy’; z = 2.16) is one of the most massive systems in the early Universe and surrounded by a dense ‘web’ of proto-cluster galaxies. Using the Australia Telescope Compact Array, we detected CO(1–0) emission from cold molecular gas – the raw ingredient for star formation – across the Spiderweb Galaxy. We infer a molecular gas mass of MH2 = 6 × 1010 M☉ (for MH2/L′CO = 0.8). While the bulk of the molecular gas coincides with the central radio galaxy, there are indications that a substantial fraction of this gas is associated with satellite galaxies or spread across the intergalactic medium on scales of tens of kpc. In addition, we tentatively detect CO(1–0) in the star-forming proto-cluster galaxy HAE 229, 250 kpc to the West. Our observations are consistent with the fact that the Spiderweb Galaxy is building up its stellar mass through a massive burst of widespread star formation. At maximum star formation efficiency, the molecular gas will be able to sustain the current star formation rate (SFR ≈ 1400 M☉ yr−1, as traced by Seymour et al.) for about 40 Myr. This is similar to the estimated typical lifetime of a major starburst event in infrared luminous merger systems. 2013 Journal Article http://hdl.handle.net/20.500.11937/34978 10.1093/mnras/stt147 fulltext
spellingShingle Emonts, B.
Feain, I.
Röttgering, H.
Miley, G.
Seymour, Nick
Norris, R.
Carilli, C.
Villar-Martín, M.
Mao, M.
Sadler, E.
Ekers, R.
van Moorsel, G.
Ivison, R.
Pentericci, L.
Tadhunter, C.
Saikia, D.
CO(1-0) detection of molecular gas in the massive Spiderweb Galaxy (z = 2)
title CO(1-0) detection of molecular gas in the massive Spiderweb Galaxy (z = 2)
title_full CO(1-0) detection of molecular gas in the massive Spiderweb Galaxy (z = 2)
title_fullStr CO(1-0) detection of molecular gas in the massive Spiderweb Galaxy (z = 2)
title_full_unstemmed CO(1-0) detection of molecular gas in the massive Spiderweb Galaxy (z = 2)
title_short CO(1-0) detection of molecular gas in the massive Spiderweb Galaxy (z = 2)
title_sort co(1-0) detection of molecular gas in the massive spiderweb galaxy (z = 2)
url http://hdl.handle.net/20.500.11937/34978