Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage

A nanosize Zr-metal organic framework (Zr-MOF, UiO-66) with a uniformed particle size around 100 nm was solvothermally synthesized and activated by solvent exchange method, vacuum drying and heating. The activation process with an exchangeable guest solvent produced the Zr-MOF with a high surface ar...

Full description

Bibliographic Details
Main Authors: Abid, Hussein, Tian, Hu-Yong, Ang, Ming, Tade, Moses, Buckley, Craig, Wang, Shaobin
Format: Journal Article
Published: Elsevier BV 2012
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/3479
Description
Summary:A nanosize Zr-metal organic framework (Zr-MOF, UiO-66) with a uniformed particle size around 100 nm was solvothermally synthesized and activated by solvent exchange method, vacuum drying and heating. The activation process with an exchangeable guest solvent produced the Zr-MOF with a high surface area by removal almost all guest and free terephthalic acid molecules from the pores enhancing its capacity for adsorption. The nanosize Zr-MOF also showed strong thermal stability up to 753 K. The Zr-MOF was tested for hydrogen and carbon dioxide adsorption at varying pressures and temperatures and it exhibited adsorption capacity of 1.6 wt% (H2) at 1 atm, 77 K and 79 cc (CO2) g-1 at 1 atm, 273 K, respectively. The heat of H2 adsorption was estimated to be 6–12 kJ mol-1 while the heat of CO2 adsorption was determined to be around 28 kJ mol-1.