Mesoporous and Nanostructured TiO2 layer with Ultra-High Loading on Nitrogen-Doped Carbon Foams as Flexible and Free-Standing Electrodes for Lithium-Ion Batteries
A simple and green method is developed for the preparation of nanostructured TiO2 supported on nitrogen-doped carbon foams (NCFs) as a free-standing and flexible electrode for lithium-ion batteries (LIBs), in which the TiO2 with 2.5–4 times higher loading than the conventional TiO2-based flexible el...
| Main Authors: | Chu, S., Zhong, Y., Cai, R., Zhang, Z., Wei, S., Shao, Zongping |
|---|---|
| Format: | Journal Article |
| Published: |
Wiley
2016
|
| Online Access: | http://hdl.handle.net/20.500.11937/33625 |
Similar Items
Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries
by: Zhao, B., et al.
Published: (2012)
by: Zhao, B., et al.
Published: (2012)
Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries
by: Wang, J., et al.
Published: (2011)
by: Wang, J., et al.
Published: (2011)
Free-standing nitrogen doped V-O-C nanofiber film as promising electrode for flexible lithium-ionbatteries
by: Chen, X., et al.
Published: (2014)
by: Chen, X., et al.
Published: (2014)
Dodecylamine-Induced Synthesis of a Nitrogen-Doped Carbon Comb for Advanced Lithium-Sulfur Battery Cathodes
by: Lu, Q., et al.
Published: (2018)
by: Lu, Q., et al.
Published: (2018)
Electrolyte Engineering for Safer Lithium-Ion Batteries: A Review
by: Cao, Chencheng, et al.
Published: (2023)
by: Cao, Chencheng, et al.
Published: (2023)
Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibers
by: Yuan, T., et al.
Published: (2011)
by: Yuan, T., et al.
Published: (2011)
Self-assembled mesoporous TiO2/carbon nanotube composite with a three-dimensional conducting nanonetwork as a high-rate anode material for lithium-ion battery
by: Wang, J., et al.
Published: (2014)
by: Wang, J., et al.
Published: (2014)
Modified template synthesis and electrochemical performance of a Co3O4/mesoporous cathode for lithium–oxygen batteries
by: Wang, S., et al.
Published: (2015)
by: Wang, S., et al.
Published: (2015)
From Paper to Paper-like Hierarchical Anatase TiO2 Film Electrode for High-Performance Lithium-Ion Batteries
by: Zhao, B., et al.
Published: (2012)
by: Zhao, B., et al.
Published: (2012)
Enhancing Fast-Charge Capabilities in Solid-State Lithium Batteries through the Integration of High Li0.5La0.5TiO3 (LLTO) Content in the Lithium-Metal Anode
by: Cao, Chencheng, et al.
Published: (2023)
by: Cao, Chencheng, et al.
Published: (2023)
Recent progress in metal–organic frameworks for lithium–sulfur batteries
by: Zhong, Y., et al.
Published: (2018)
by: Zhong, Y., et al.
Published: (2018)
Porous TiO2(B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries
by: Wang, J., et al.
Published: (2013)
by: Wang, J., et al.
Published: (2013)
Two-Step Fabrication of Li4Ti5O12-Coated Carbon Nanofibers as a Flexible Film Electrode for High-Power Lithium-Ion Batteries
by: Zhang, Z., et al.
Published: (2017)
by: Zhang, Z., et al.
Published: (2017)
Sulfur-nickel foam as cathode materials for lithium-sulfur batteries
by: Cheng, J., et al.
Published: (2015)
by: Cheng, J., et al.
Published: (2015)
Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries
by: Chen, H., et al.
Published: (2014)
by: Chen, H., et al.
Published: (2014)
Trapping sulfur in hierarchically porous, hollow indented carbon spheres: A high-performance cathode for lithium-sulfur batteries
by: Zhong, Y., et al.
Published: (2016)
by: Zhong, Y., et al.
Published: (2016)
Corncob-shaped ZnFe2O4/C nanostructures for improved anode rate and cycle performance in lithium-ion batteries
by: Mao, J., et al.
Published: (2015)
by: Mao, J., et al.
Published: (2015)
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Enhancing the cycle life of Li-S batteries by designing a free-standing cathode with excellent flexible, conductive, and catalytic properties
by: Lu, Q., et al.
Published: (2019)
by: Lu, Q., et al.
Published: (2019)
Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries
by: Yao, L., et al.
Published: (2014)
by: Yao, L., et al.
Published: (2014)
Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO 2 microspheres and activated carbon electrodes with superior performance
by: Cai, Y., et al.
Published: (2014)
by: Cai, Y., et al.
Published: (2014)
Facile synthesis of a MoO2-Mo2C-C composite and its application as favorable anode material for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
Nitrogen-doped TiO2 microspheres with hierarchical micro/nanostructures and rich dual-phase junctions for enhanced photocatalytic activity
by: Wang, W., et al.
Published: (2016)
by: Wang, W., et al.
Published: (2016)
Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries
by: Deng, X., et al.
Published: (2016)
by: Deng, X., et al.
Published: (2016)
Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance
by: Cai, R., et al.
Published: (2010)
by: Cai, R., et al.
Published: (2010)
Nitrogen-doped graphene quantum dots decorated graphite foam as ultra-high active free-standing electrode for electrochemical hydrogen evolution and phenol degradation
by: Guo, X., et al.
Published: (2018)
by: Guo, X., et al.
Published: (2018)
Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrode for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
A hierarchical Zn2Mo3O8 nanodots–porous carbon composite as a superior anode for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
Synthesis of lithium insertion material Li4Ti5O12 from rutile TiO2 via surface activation
by: Yuan, T., et al.
Published: (2010)
by: Yuan, T., et al.
Published: (2010)
Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product
by: Tan, P., et al.
Published: (2017)
by: Tan, P., et al.
Published: (2017)
Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance
by: Liu, H., et al.
Published: (2011)
by: Liu, H., et al.
Published: (2011)
Recent Advances in Perovskite Oxides as Electrode Materials for Nonaqueous Lithium-Oxygen Batteries
by: Tan, P., et al.
Published: (2017)
by: Tan, P., et al.
Published: (2017)
Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis
by: Gu, P., et al.
Published: (2010)
by: Gu, P., et al.
Published: (2010)
High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries
by: Lin, Q., et al.
Published: (2016)
by: Lin, Q., et al.
Published: (2016)
Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery
by: Cai, R., et al.
Published: (2011)
by: Cai, R., et al.
Published: (2011)
Magnetic Electrodeposition of the Hierarchical Cobalt Oxide Nanostructure from Spent Lithium-Ion Batteries: Its Application as a Supercapacitor Electrode
by: Aboelazm, Eslam A. A., et al.
Published: (2018)
by: Aboelazm, Eslam A. A., et al.
Published: (2018)
Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries
by: Gao, X., et al.
Published: (2015)
by: Gao, X., et al.
Published: (2015)
A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries
by: Cao, Chencheng, et al.
Published: (2022)
by: Cao, Chencheng, et al.
Published: (2022)
Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
Flexible Zn- and Li-air batteries: Recent advances, challenges, and future perspectives
by: Tan, P., et al.
Published: (2017)
by: Tan, P., et al.
Published: (2017)
Similar Items
-
Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries
by: Zhao, B., et al.
Published: (2012) -
Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries
by: Wang, J., et al.
Published: (2011) -
Free-standing nitrogen doped V-O-C nanofiber film as promising electrode for flexible lithium-ionbatteries
by: Chen, X., et al.
Published: (2014) -
Dodecylamine-Induced Synthesis of a Nitrogen-Doped Carbon Comb for Advanced Lithium-Sulfur Battery Cathodes
by: Lu, Q., et al.
Published: (2018) -
Electrolyte Engineering for Safer Lithium-Ion Batteries: A Review
by: Cao, Chencheng, et al.
Published: (2023)