| Summary: | Permeability and rock type are the most important rock properties which can be used as input parameters to build 3D petrophysical models of hydrocarbon reservoirs. These parameters are derived from core samples which may not be available for all boreholes, whereas, almost all boreholes have well log data. In this study, the importance of the fuzzy logic approach for prediction of rock type from well log responses was shown by using an example of the Vp to Vs ratio for lithology determination from crisp and fuzzy logic approaches. A fuzzy c-means clustering technique was used for rock type classification using porosity and permeability data. Then, based on the fuzzy possibility concept, an algorithm was prepared to estimate clustering derived rock types from well log data. Permeability was modelled and predicted using a Takagi-Sugeno fuzzy inference system. Then a back propagation neural network was applied to verify fuzzy results for permeability modelling. For this purpose, three wells of the Iran offshore gas field were chosen for the construction of intelligent models of the reservoir, and a forth well was used as a test well to evaluate the reliability of the models. The results of this study show that fuzzy logic approach was successful for the prediction of permeability and rock types in the Iran offshore gas field.
|