Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-d (0.0 = y = 0.8) for fuel cell applications
High-temperature proton conductors are promising electrolytes for protonic solid oxide fuel cells (H+-SOFCs). In this study, the relationship between the Zr doping content and structure, chemical stability, carbon dioxide resistivity, sinterability and electrochemical properties of BaZryCe0.8-yY0.2O...
| Main Authors: | , , , |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier SA
2009
|
| Online Access: | http://hdl.handle.net/20.500.11937/33294 |
| _version_ | 1848753905600561152 |
|---|---|
| author | Guo, Y. Lin, Y. Ran, R. Shao, Zongping |
| author_facet | Guo, Y. Lin, Y. Ran, R. Shao, Zongping |
| author_sort | Guo, Y. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | High-temperature proton conductors are promising electrolytes for protonic solid oxide fuel cells (H+-SOFCs). In this study, the relationship between the Zr doping content and structure, chemical stability, carbon dioxide resistivity, sinterability and electrochemical properties of BaZryCe0.8-yY0.2O3-d (BZCYy), 0.0 = y = 0.8, are studied systemically using XRD, CO2-TPD, SEM, EIS and I-V polarization characterizations. Zr doping suppresses carbonate formation, CO2-TPD demonstrates that the formative rate of carbonate over BZCYy are 7.50 × 10-6 and 8.70 × 10-7 mol m-2 min-1 at y = 0.0 and 0.4, respectively. Investigation of sinterability shows that the anode-supported configuration helps the sintering of the thin-film electrolyte. Peak power densities of 220 and 84 mW cm-2 are obtained at 750 and 450 °C, respectively, with BZCY0.4 electrolyte. Due to the favorable chemical stability against CO2 and good sintering in the thin-film configuration, BZCY0.4 is a potential electrolyte material for H+-SOFCs. © 2009 Elsevier B.V. All rights reserved. |
| first_indexed | 2025-11-14T08:31:57Z |
| format | Journal Article |
| id | curtin-20.500.11937-33294 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T08:31:57Z |
| publishDate | 2009 |
| publisher | Elsevier SA |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-332942017-09-13T15:30:51Z Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-d (0.0 = y = 0.8) for fuel cell applications Guo, Y. Lin, Y. Ran, R. Shao, Zongping High-temperature proton conductors are promising electrolytes for protonic solid oxide fuel cells (H+-SOFCs). In this study, the relationship between the Zr doping content and structure, chemical stability, carbon dioxide resistivity, sinterability and electrochemical properties of BaZryCe0.8-yY0.2O3-d (BZCYy), 0.0 = y = 0.8, are studied systemically using XRD, CO2-TPD, SEM, EIS and I-V polarization characterizations. Zr doping suppresses carbonate formation, CO2-TPD demonstrates that the formative rate of carbonate over BZCYy are 7.50 × 10-6 and 8.70 × 10-7 mol m-2 min-1 at y = 0.0 and 0.4, respectively. Investigation of sinterability shows that the anode-supported configuration helps the sintering of the thin-film electrolyte. Peak power densities of 220 and 84 mW cm-2 are obtained at 750 and 450 °C, respectively, with BZCY0.4 electrolyte. Due to the favorable chemical stability against CO2 and good sintering in the thin-film configuration, BZCY0.4 is a potential electrolyte material for H+-SOFCs. © 2009 Elsevier B.V. All rights reserved. 2009 Journal Article http://hdl.handle.net/20.500.11937/33294 10.1016/j.jpowsour.2009.03.044 Elsevier SA restricted |
| spellingShingle | Guo, Y. Lin, Y. Ran, R. Shao, Zongping Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-d (0.0 = y = 0.8) for fuel cell applications |
| title | Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-d (0.0 = y = 0.8) for fuel cell applications |
| title_full | Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-d (0.0 = y = 0.8) for fuel cell applications |
| title_fullStr | Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-d (0.0 = y = 0.8) for fuel cell applications |
| title_full_unstemmed | Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-d (0.0 = y = 0.8) for fuel cell applications |
| title_short | Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-d (0.0 = y = 0.8) for fuel cell applications |
| title_sort | zirconium doping effect on the performance of proton-conducting bazryce0.8-yy0.2o3-d (0.0 = y = 0.8) for fuel cell applications |
| url | http://hdl.handle.net/20.500.11937/33294 |