Viability and topographical analysis of microencapsulated ß-cells exposed to a biotransformed tertiary bile acid: An ex vivo study
Microencapsulated pancreatic ß-cells have been studied as an ideal system for delivering insulin. However, the clinical applications have not been achieved. We tried multiple excipients/ratios and various methods for producing suitable microcapsules, but success remains limited. A recent study used...
| Main Authors: | Mooranian, Armin, Negrulj, Rebecca, Al-Salami, Hani |
|---|---|
| Format: | Journal Article |
| Published: |
2016
|
| Online Access: | http://hdl.handle.net/20.500.11937/32621 |
Similar Items
Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic ß-cells.
by: Mooranian, Armin, et al.
Published: (2014)
by: Mooranian, Armin, et al.
Published: (2014)
Potentials and Limitations of Bile Acids in Type 2 Diabetes Mellitus: Applications of Microencapsulation as a Novel Oral Delivery System
by: Negrulj, Rebecca, et al.
Published: (2013)
by: Negrulj, Rebecca, et al.
Published: (2013)
Novel artificial cell microencapsulation of probucol and bile acids in diabetes mellitus
by: Mooranian, Armin
Published: (2018)
by: Mooranian, Armin
Published: (2018)
Flow vibration-doubled concentric system coupled with low ratio amine to produce bile acid-macrocapsules of ß-cells
by: Mooranian, Armin, et al.
Published: (2016)
by: Mooranian, Armin, et al.
Published: (2016)
Advanced bile acid-based multi-compartmental microencapsulated pancreatic ß-cells integrating a polyelectrolyte-bile acid formulation, for diabetes treatment.
by: Mooranian, A., et al.
Published: (2014)
by: Mooranian, A., et al.
Published: (2014)
The impact of allylamine-bile acid combinations on cell delivery microcapsules in diabetes
by: Mooranian, Armin, et al.
Published: (2016)
by: Mooranian, Armin, et al.
Published: (2016)
An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid) as a permeation enhancer
by: Mooranian, Armin, et al.
Published: (2014)
by: Mooranian, Armin, et al.
Published: (2014)
The effect of a tertiary bile acid, taurocholic acid, on the morphology and physical characteristics of microencapsulated probucol: potential applications in diabetes: a characterization study
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Primary Bile Acid Chenodeoxycholic Acid-Based Microcapsules to Examine ß-cell Survival and the Inflammatory Response
by: Mooranian, A., et al.
Published: (2016)
by: Mooranian, A., et al.
Published: (2016)
Designing anti-diabetic ß-cells microcapsules using polystyrenic sulfonate, polyallylamine and a tertiary bile acid: Morphology, bioenergetics and cytokine analysis.
by: Mooranian, A., et al.
Published: (2016)
by: Mooranian, A., et al.
Published: (2016)
Release and swelling studies of an innovative antidiabetic-bile acid microencapsulated formulation, as a novel targeted therapy for diabetes treatment
by: Mooranian, Armin, et al.
Published: (2015)
by: Mooranian, Armin, et al.
Published: (2015)
New biotechnological microencapsulating methodology utilizing individualized gradient-screened jet laminar flow techniques for pancreatic ß-cell delivery: bile acids support cell energy-generating mechanisms
by: Mooranian, A., et al.
Published: (2017)
by: Mooranian, A., et al.
Published: (2017)
Novel artificial cell microencapsulation of a complex gliclazide-deoxycholic bile acid formulation: A Characterization Study
by: Mooranian, Armin, et al.
Published: (2014)
by: Mooranian, Armin, et al.
Published: (2014)
The incorporation of water-soluble gel matrix into bile acid-based microcapsules for the delivery of viable ß-cells of the pancreas, in diabetes treatment: biocompatibility and functionality studies.
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Electrokinetic potential-stabilization by bile acid-microencapsulating formulation of pancreatic ß-cells cultured in high ratio poly-L-ornithine-gel hydrogel colloidal dispersion: applications in cell-biomaterials, tissue engineering and biotechnological applications
by: Mooranian, A., et al.
Published: (2017)
by: Mooranian, A., et al.
Published: (2017)
Biological Assessments of Encapsulated Pancreatic ß-Cells: Their Potential Transplantation in Diabetes
by: Mooranian, Armin, et al.
Published: (2016)
by: Mooranian, Armin, et al.
Published: (2016)
The effect of molecular weights of microencapsulating polymers on viability of mouse-cloned pancreatic ß-cells: biomaterials, osmotic forces and potential applications in diabetes treatment
by: Mooranian, A., et al.
Published: (2018)
by: Mooranian, A., et al.
Published: (2018)
Alginate-combined cholic acid increased insulin secretion of microencapsulated mouse cloned pancreatic ß cells
by: Mooranian, A., et al.
Published: (2017)
by: Mooranian, A., et al.
Published: (2017)
An advanced microencapsulated system: a platform for optimized oral delivery of antidiabetic drug-bile acid formulations
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Long-Term Supplementation of Microencapsulated ursodeoxycholic Acid Prevents Hypertension in a Mouse Model of Insulin Resistance:
by: Al-Salami, Hani, et al.
Published: (2016)
by: Al-Salami, Hani, et al.
Published: (2016)
Influence of Biotechnological Processes, Speed of Formulation Flow and Cellular Concurrent Stream-Integration on Insulin Production from ß-cells as a Result of Co-Encapsulation with a Highly Lipophilic Bile Acid
by: Mooranian, A., et al.
Published: (2017)
by: Mooranian, A., et al.
Published: (2017)
The roles of bile acids and applications of microencapsulation technology in treating Type 1 diabetes mellitus
by: Woodhams, L., et al.
Published: (2017)
by: Woodhams, L., et al.
Published: (2017)
Release and swelling studies of an innovative antidiabetic-bile acid microencapsulated formulation, as a novel targeted therapy for diabetes treatment (vol 32, pg 151, 2014)
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Innovative Microcapsules for Pancreatic ß-Cells Harvested from Mature Double-Transgenic Mice: Cell Imaging, Viability, Induced Glucose-Stimulated Insulin Measurements and Proinflammatory Cytokines Analysis
by: Mooranian, Armin, et al.
Published: (2017)
by: Mooranian, Armin, et al.
Published: (2017)
Alginate-deoxycholic Acid Interaction and Its Impact on Pancreatic ?-Cells and Insulin Secretion and Potential Treatment of Type 1 Diabetes
by: Mooranian, Armin, et al.
Published: (2016)
by: Mooranian, Armin, et al.
Published: (2016)
Biotransformation of fatty acids by Pseudomonas sp. strain SS 22
by: Abdul Razak, Che Nyonya
Published: (2002)
by: Abdul Razak, Che Nyonya
Published: (2002)
Alanyl-glutamine improves pancreatic ß-cell function following ex vivo inflammatory challenge
by: Cruzat, Vinicius, et al.
Published: (2015)
by: Cruzat, Vinicius, et al.
Published: (2015)
The effects of Ionic Gelation- Vibrational Jet Flow technique in fabrication of microcapsules incorporating ß-cell: applications in Type-1 Diabetes
by: Mooranian, A., et al.
Published: (2017)
by: Mooranian, A., et al.
Published: (2017)
Inflammatory bowel disease: clinical aspects and treatments
by: Fakhoury, M., et al.
Published: (2014)
by: Fakhoury, M., et al.
Published: (2014)
Morphological, Stability, and Hypoglycemic Effects of New Gliclazide-Bile Acid Microcapsules for Type 1 Diabetes Treatment: the Microencapsulation of Anti-diabetics Using a Microcapsule-Stabilizing Bile Acid
by: Mathavan, S., et al.
Published: (2018)
by: Mathavan, S., et al.
Published: (2018)
Novel multicompartmental bile acid-based microcapsules for pancreatic β-cell transplantation
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
NOVEL MULTICOMPARTMENTAL BILE ACID-BASED MICROCAPSULES FOR PANCREATIC beta-CELL TRANSPLANTATION
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
The applications of microencapsulated formulation of gliclazide and bile acids in Type-1 diabetes mellitus
by: Mathavan, Sangeetha
Published: (2017)
by: Mathavan, Sangeetha
Published: (2017)
Microencapsulation as a novel delivery method for the potential antidiabetic drug, Probucol
by: Mooranian, Armin, et al.
Published: (2014)
by: Mooranian, Armin, et al.
Published: (2014)
Ex vivo and in vitro assessment of anti-inflammatory activity of seed ß-conglutin proteins from Lupinus angustifolius
by: Lima-Cabello, E., et al.
Published: (2018)
by: Lima-Cabello, E., et al.
Published: (2018)
Multicompartmental, multilayered probucol microcapsules for diabetes mellitus: Formulation characterization and effects on production of insulin and inflammation in a pancreatic ß-cell line
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Novel chenodeoxycholic acid-sodium alginate matrix in the microencapsulation of the potential antidiabetic drug, probucol. An in vitro study
by: Mooranian, A., et al.
Published: (2015)
by: Mooranian, A., et al.
Published: (2015)
Diabetes development increased concentrations of the conjugated bile acid, taurocholic acid in serum, while treatment with microencapsulated-taurocholic acid exerted no hypoglycaemic effects
by: Mathavan, S., et al.
Published: (2017)
by: Mathavan, S., et al.
Published: (2017)
Stability and Release Kinetics of an Advanced Gliclazide-Cholic Acid Formulation: The Use of Artificial-Cell Microencapsulation in Slow Release Targeted Oral Delivery of Antidiabetics
by: Mooranian, Armin, et al.
Published: (2014)
by: Mooranian, Armin, et al.
Published: (2014)
Ex vivo modelling of oesophago-gastric cancer
by: Saunders, John
Published: (2017)
by: Saunders, John
Published: (2017)
Similar Items
-
Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic ß-cells.
by: Mooranian, Armin, et al.
Published: (2014) -
Potentials and Limitations of Bile Acids in Type 2 Diabetes Mellitus: Applications of Microencapsulation as a Novel Oral Delivery System
by: Negrulj, Rebecca, et al.
Published: (2013) -
Novel artificial cell microencapsulation of probucol and bile acids in diabetes mellitus
by: Mooranian, Armin
Published: (2018) -
Flow vibration-doubled concentric system coupled with low ratio amine to produce bile acid-macrocapsules of ß-cells
by: Mooranian, Armin, et al.
Published: (2016) -
Advanced bile acid-based multi-compartmental microencapsulated pancreatic ß-cells integrating a polyelectrolyte-bile acid formulation, for diabetes treatment.
by: Mooranian, A., et al.
Published: (2014)