Optimal linear regression estimator in the fitting of Weibull strength distribution
The strength of ceramics is characterized by a wide scatter because of pre-existing cracks that occur during the manufacturing and machining processes. The Weibull distribution is one of the most widely used functions for the characterization of strength data. A linear regression method is generally...
| Main Authors: | , , |
|---|---|
| Format: | Journal Article |
| Published: |
ASTM International
2014
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/32601 |
| _version_ | 1848753708163137536 |
|---|---|
| author | Nohut, S. Lu, Chunsheng Gorjan, L. |
| author_facet | Nohut, S. Lu, Chunsheng Gorjan, L. |
| author_sort | Nohut, S. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | The strength of ceramics is characterized by a wide scatter because of pre-existing cracks that occur during the manufacturing and machining processes. The Weibull distribution is one of the most widely used functions for the characterization of strength data. A linear regression method is generally applied in the estimation of Weibull parameters for its simplicity and low overestimation, in which probability estimators play an important role. In this paper, an optimal probability estimator for different sample sizes is obtained by using alumina strength data. In comparison with other commonly used estimators, the optimal probability estimator shows less bias and higher safety. The performance of the optimal probability estimator is also verified by other experimental strength data. In conclusion, an optimal probability estimator constant of 0.25 is suggested in practical applications. |
| first_indexed | 2025-11-14T08:28:48Z |
| format | Journal Article |
| id | curtin-20.500.11937-32601 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T08:28:48Z |
| publishDate | 2014 |
| publisher | ASTM International |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-326012017-09-13T15:24:20Z Optimal linear regression estimator in the fitting of Weibull strength distribution Nohut, S. Lu, Chunsheng Gorjan, L. failure probability strength Alumina linear regression Weibull distribution The strength of ceramics is characterized by a wide scatter because of pre-existing cracks that occur during the manufacturing and machining processes. The Weibull distribution is one of the most widely used functions for the characterization of strength data. A linear regression method is generally applied in the estimation of Weibull parameters for its simplicity and low overestimation, in which probability estimators play an important role. In this paper, an optimal probability estimator for different sample sizes is obtained by using alumina strength data. In comparison with other commonly used estimators, the optimal probability estimator shows less bias and higher safety. The performance of the optimal probability estimator is also verified by other experimental strength data. In conclusion, an optimal probability estimator constant of 0.25 is suggested in practical applications. 2014 Journal Article http://hdl.handle.net/20.500.11937/32601 10.1520/JTE20130074 ASTM International restricted |
| spellingShingle | failure probability strength Alumina linear regression Weibull distribution Nohut, S. Lu, Chunsheng Gorjan, L. Optimal linear regression estimator in the fitting of Weibull strength distribution |
| title | Optimal linear regression estimator in the fitting of Weibull strength distribution |
| title_full | Optimal linear regression estimator in the fitting of Weibull strength distribution |
| title_fullStr | Optimal linear regression estimator in the fitting of Weibull strength distribution |
| title_full_unstemmed | Optimal linear regression estimator in the fitting of Weibull strength distribution |
| title_short | Optimal linear regression estimator in the fitting of Weibull strength distribution |
| title_sort | optimal linear regression estimator in the fitting of weibull strength distribution |
| topic | failure probability strength Alumina linear regression Weibull distribution |
| url | http://hdl.handle.net/20.500.11937/32601 |