A new neodymium-doped BaZr0.8Y0.2O3-δ as potential electrolyte for proton-conducting solid oxide fuel cells
Chemically stable BaZr0.8Y0.2O3−δ (BZY) oxide is limited to applications as an electrolyte for solid oxide fuel cells (SOFCs) because of its poor sintering behavior. This study attempts to improve the sinterability and conductivity of BZY using the partial substitution of Zr4+ in BZY with Nd3+. An o...
| Main Authors: | Liu, Y., Guo, Y., Ran, R., Shao, Zongping |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier B.V
2012
|
| Online Access: | http://hdl.handle.net/20.500.11937/3240 |
Similar Items
Structure, sinterability, chemical stability and conductivity of proton-conducting BaZr0.6M0.2Y0.2O3-[delta] electrolyte membranes: The effect of the M dopant
by: Liu, Y., et al.
Published: (2014)
by: Liu, Y., et al.
Published: (2014)
Optimizing the modification method of zinc-enhanced sintering of BaZr 0.4Ce0.4Y0.2O3-d-based electrolytes for application in an anode-supported protonic solid oxide fuel cell
by: Guo, Y., et al.
Published: (2010)
by: Guo, Y., et al.
Published: (2010)
A novel approach for substantially improving the sinterability of BaZr0.4Ce0.4Y0.2O3-delta electrolyte for fuel cells by impregnating the green membrane with zinc nitrate as a sintering aid
by: Liu, Y., et al.
Published: (2013)
by: Liu, Y., et al.
Published: (2013)
Effect of Ba nonstoichiometry on the phase structure, sintering, electrical conductivity and phase stability of Ba1±xCe0.4Zr0.4Y0.2O3-δ (0<=x<=0.20) proton conductors
by: Guo, Y., et al.
Published: (2011)
by: Guo, Y., et al.
Published: (2011)
Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-d (0.0 = y = 0.8) for fuel cell applications
by: Guo, Y., et al.
Published: (2009)
by: Guo, Y., et al.
Published: (2009)
Enhanced electrochemical performance, water storage capability and coking resistance of a Ni+BaZr0.1Ce0.7Y0.1Yb0.1O3−δ anode for solid oxide fuel cells operating on ethanol
by: Wang, W., et al.
Published: (2015)
by: Wang, W., et al.
Published: (2015)
Stable and easily sintered BaCe0.5Zr0.3Y0.2O3-delta electrolytes using ZnO and Na2CO3additives for protonic oxide fuel cells
by: Li, Y., et al.
Published: (2013)
by: Li, Y., et al.
Published: (2013)
Performance variability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode on proton-conducting electrolyte SOFCs with Ag and Au current collectors
by: Wan, T., et al.
Published: (2017)
by: Wan, T., et al.
Published: (2017)
Silver-modified Ba0.5Sr0.5Co0.8Fe 0.2O3-d as cathodes for a proton conducting solid-oxide fuel cell
by: Lin, Y., et al.
Published: (2010)
by: Lin, Y., et al.
Published: (2010)
BaZr0.1Ce0.7Y0.1Yb0.1O3-[delta] as highly active and carbon tolerant anode for direct hydrocarbon solid oxide fuel cells
by: Li, M., et al.
Published: (2014)
by: Li, M., et al.
Published: (2014)
Electrochemical contribution of silver current collector to oxygen reduction reaction over Ba0.5Sr0.5Co0.8Fe0.2O3Ld electrode on oxygen-ionic conducting electrolyte
by: Guo, Y., et al.
Published: (2012)
by: Guo, Y., et al.
Published: (2012)
Effect of foreign oxides on the phase structure, sintering and transport properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as ceramic membranes for oxygen separation
by: Ran, R., et al.
Published: (2011)
by: Ran, R., et al.
Published: (2011)
Characterization and evaluation of BaCo0.7Fe0.2Nb0.1O3Ld as a cathode for proton-conducting solid oxide fuel cells
by: Lin, Y., et al.
Published: (2012)
by: Lin, Y., et al.
Published: (2012)
Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
Effect of Sm3+ content on the properties and electrochemical performance of SmxSr1 − xCoO3 − δ (0.2 ≤ x ≤ 0.8) as an oxygen reduction electrodes on doped ceria electrolytes
by: Guo, Y., et al.
Published: (2011)
by: Guo, Y., et al.
Published: (2011)
Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-d as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell
by: Lin, Y., et al.
Published: (2008)
by: Lin, Y., et al.
Published: (2008)
A novel Ba0.6Sr0.4Co0.9Nb0.1O3-d cathode for protonic solid-oxide fuel cells
by: Lin, Y., et al.
Published: (2010)
by: Lin, Y., et al.
Published: (2010)
Ce0.9Gd0.1O2−δ membranes coated with porous Ba0.5Sr0.5Co0.8Fe0.2O3−δ for oxygen separation
by: Zhang, C., et al.
Published: (2015)
by: Zhang, C., et al.
Published: (2015)
Significant impact of the current collection material and method on the performance of Ba0.5Sr0.5Co0.8Fe 0.2O3-d electrodes in solid oxide fuel cells
by: Guo, Y., et al.
Published: (2011)
by: Guo, Y., et al.
Published: (2011)
Electrochemical performance and effect of moisture on Ba0.5Sr0.5Sc0.175Nb0.025Co0.8O3-δ oxide as a promising electrode for proton-conducting solid oxide fuel cells
by: Zhang, Y., et al.
Published: (2019)
by: Zhang, Y., et al.
Published: (2019)
A top-down strategy for the synthesis of mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a cathode precursor for buffer layer-free deposition on stabilized zirconia electrolyte with a superior electrochemical performance
by: Su, C., et al.
Published: (2015)
by: Su, C., et al.
Published: (2015)
Fundamental Understanding and Application of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Perovskite in Energy Storage and Conversion: Past, Present, and Future
by: Xu, Xiaomin, et al.
Published: (2021)
by: Xu, Xiaomin, et al.
Published: (2021)
Toward Enhanced Oxygen Evolution on Perovskite Oxides Synthesized from Different Approaches: A Case Study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ
by: Xu, X., et al.
Published: (2016)
by: Xu, X., et al.
Published: (2016)
Electrochemical performance of SrSc0.2Co0.8O 3-d cathode on Sm0.2Ce0.8O1.9 electrolyte for low temperature SOFCs
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
Oxygen selective membranes based on B-site cation-deficient (Ba0.5Sr0.5)(Co0.8Fe0.2)yO3-8 perovskite with improved operational stability
by: Ge, L., et al.
Published: (2008)
by: Ge, L., et al.
Published: (2008)
Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3-d + Sm0.2Ce0.8O1.9 composite cathode
by: Wang, K., et al.
Published: (2008)
by: Wang, K., et al.
Published: (2008)
Oxygen permeation properties of novel BaCo0.85Bi0.05Zr0.1O3−δ hollow fibre membrane
by: Qiu, Z., et al.
Published: (2018)
by: Qiu, Z., et al.
Published: (2018)
In situ templating synthesis of conic Ba0.5Sr 0.5Co0.8Fe0.2O3-d perovskite at elevated temperature
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
Synthesis and assessment of la0.8Sr0.2Sc yMn1-yO3-d as cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte
by: Gu, H., et al.
Published: (2008)
by: Gu, H., et al.
Published: (2008)
Effect of firing temperature on the microstructure and performance of PrBaCo2O5+d cathodes on Sm0.2Ce0.8O1.9 electrolytes fabricated by spray deposition-firing processes
by: Chen, D., et al.
Published: (2010)
by: Chen, D., et al.
Published: (2010)
A composite oxygen-reduction electrode composed of SrSc 0.2Co0.8O3-d perovskite and Sm 0.2Ce0.8O1.9 for an intermediate-temperature solid-oxide fuel cell
by: An, B., et al.
Published: (2010)
by: An, B., et al.
Published: (2010)
Activation and deactivation kinetics of oxygen reduction over a la 0.8Sr0.2Sc0.1Mn0.9O3 cathode
by: Zheng, Y., et al.
Published: (2008)
by: Zheng, Y., et al.
Published: (2008)
Electrochemical Performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ in Symmetric Cells With Sm0.2Ce0.8O1.9 Electrolyte for Nitric Oxide Reduction Reaction
by: Shi, Huangang, et al.
Published: (2020)
by: Shi, Huangang, et al.
Published: (2020)
Evaluation of the CO2 tolerant cathode for solid oxide fuel cells: Praseodymium oxysulfates/Ba0.5Sr0.5Co0.8Fe0.2O3-δ
by: Yang, T., et al.
Published: (2018)
by: Yang, T., et al.
Published: (2018)
Performance of SrSc0.2Co0.8O3-d + Sm0.5Sr0.5CoO3-d mixed-conducting composite electrodes for oxygen reduction at intermediate temperatures
by: Guo, Y., et al.
Published: (2009)
by: Guo, Y., et al.
Published: (2009)
The influence of impurity ions on the permeation and oxygen reduction properties of Ba0.5Sr0.5Co0.8Fe0.2O3-[delta] perovskite
by: Chen, Y., et al.
Published: (2014)
by: Chen, Y., et al.
Published: (2014)
BaNb0.05Fe0.95O3−δ as a new oxygen reduction electrocatalyst for intermediate temperature solid oxide fuel cells
by: Dong, F., et al.
Published: (2013)
by: Dong, F., et al.
Published: (2013)
Further performance improvement of Ba0.5Sr0.5Co0.8Fe0.2O3-8 pervoskite membranes for air separation
by: Chen, Z., et al.
Published: (2009)
by: Chen, Z., et al.
Published: (2009)
Surface exchange and bulk diffusion properties of Ba0.5Sr 0.5Co0.8Fe0.2O3-d mixed conductor
by: Chen, D., et al.
Published: (2011)
by: Chen, D., et al.
Published: (2011)
Development of a Ni-Ce0.8Zr0.2O2 catalyst for solid oxide fuel cells operating on ethanol through internal reforming
by: Liao, M., et al.
Published: (2011)
by: Liao, M., et al.
Published: (2011)
Similar Items
-
Structure, sinterability, chemical stability and conductivity of proton-conducting BaZr0.6M0.2Y0.2O3-[delta] electrolyte membranes: The effect of the M dopant
by: Liu, Y., et al.
Published: (2014) -
Optimizing the modification method of zinc-enhanced sintering of BaZr 0.4Ce0.4Y0.2O3-d-based electrolytes for application in an anode-supported protonic solid oxide fuel cell
by: Guo, Y., et al.
Published: (2010) -
A novel approach for substantially improving the sinterability of BaZr0.4Ce0.4Y0.2O3-delta electrolyte for fuel cells by impregnating the green membrane with zinc nitrate as a sintering aid
by: Liu, Y., et al.
Published: (2013) -
Effect of Ba nonstoichiometry on the phase structure, sintering, electrical conductivity and phase stability of Ba1±xCe0.4Zr0.4Y0.2O3-δ (0<=x<=0.20) proton conductors
by: Guo, Y., et al.
Published: (2011) -
Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-d (0.0 = y = 0.8) for fuel cell applications
by: Guo, Y., et al.
Published: (2009)