A laboratory study of low-frequency wave dispersion and attenuation in water-saturated sandstones

Laboratory measurements of elastic and anelastic parameters of dry and water-saturated sandstones with low (0.7- and 1.1-mD) and high (425-mD) permeability have been conducted at seismic frequencies (0.1 to 120 Hz). The experiments were performed with a laboratory apparatus that measures the stress-...

Full description

Bibliographic Details
Main Authors: Mikhaltsevitch, Vassili, Lebedev, Maxim, Gurevich, Boris
Format: Journal Article
Published: Society of Exploration Geophysicists 2014
Online Access:http://hdl.handle.net/20.500.11937/3202
Description
Summary:Laboratory measurements of elastic and anelastic parameters of dry and water-saturated sandstones with low (0.7- and 1.1-mD) and high (425-mD) permeability have been conducted at seismic frequencies (0.1 to 120 Hz). The experiments were performed with a laboratory apparatus that measures the stress-strain relationship in the linear regime. The extensional attenuation in water-saturated low-permeability sandstones exhibits prominent peaks in the seismic band, accompanied by considerable dispersion. Variations in attenuation and dispersion in the high-permeability sandstone are below the measurement error, as is the moduli dispersion in all the sandstones in dry condition. The experiments demonstrate that for low-permeability rocks, seismic frequencies do not necessarily correspond to the low-frequency limit (relaxed pore-fluid pressures) of acoustic wave dispersion.