Petrogenesis and tectonic significance of the ~850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry

The Gangbian alkaline complex in the southeastern Yangtze Block (South China) is composed of Si-undersaturated pyroxene syenites and Si-saturated to -oversaturated syenites and quartz monzonites. SIMS zircon U–Pb analyses indicate that the complex was emplaced at 848 ± 4 Ma, during a previously-reco...

Full description

Bibliographic Details
Main Authors: Li, X., Li, W., Li, Q., Wang, Xuan-ce, Liu, Y., Yang, Y.
Format: Journal Article
Published: Elsevier Science BV 2010
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/30238
_version_ 1848753031123828736
author Li, X.
Li, W.
Li, Q.
Wang, Xuan-ce
Liu, Y.
Yang, Y.
author_facet Li, X.
Li, W.
Li, Q.
Wang, Xuan-ce
Liu, Y.
Yang, Y.
author_sort Li, X.
building Curtin Institutional Repository
collection Online Access
description The Gangbian alkaline complex in the southeastern Yangtze Block (South China) is composed of Si-undersaturated pyroxene syenites and Si-saturated to -oversaturated syenites and quartz monzonites. SIMS zircon U–Pb analyses indicate that the complex was emplaced at 848 ± 4 Ma, during a previously-recognized interval of magmatic quiescence between the ca 1.0–0.89 Ga Sibaoan orogenic magmatism and the ca 0.83–0.78 Ga magmatic flare-up. The Gangbian rocks are characterized by wide, coherent variations in major and trace elements (SiO2 = 47.6–68.4%, K2O + Na2O = 4.5–10.5%, K2O/Na2O = 0.4–1.2, MgO = 1.2–8.5%, Cr = 4.5–239 ppm, and Ni = 4.5–143 ppm) and by enrichment in LIL and LREE and depletion in Nb, Ta and P in trace element spidergrams. Their whole-rock εNd(T) (− 6.5 to − 0.4) and εHf(T) (− 10.7 to 0.4) are positively correlated, suggesting involvement of both metasomatized mantle and continental crust materials in their genesis. In situ zircon Hf–O isotopic measurements for the most evolved quartz monzonite sample yield a binary mixing trend between the mantle- and supracrustal-derived melts.It is suggested that the pyroxene syenites were derived by partial melting of metasomatized, phlogopite-bearing lithospheric mantle, and the parental magma experienced extensive fractionation of pyroxene and olivine associated with varying degrees of crustal contamination. Subsequent fractional crystallization of hornblende and minor amounts of plagioclase from the alkali basaltic magmas, accompanied by crustal contamination, produced the Si-saturated to -oversaturated syenites and quartz monzonites. These ca. 0.85 Ga alkaline rocks and neighboring contemporaneous dolerite dykes are the products of the anorogenic magmatism after the Sibao Orogeny. They post-date the final amalgamation between the Yangtze and Cathaysia Blocks, most likely manifesting the initial rifting of South China within the Rodinia supercontinent.
first_indexed 2025-11-14T08:18:03Z
format Journal Article
id curtin-20.500.11937-30238
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T08:18:03Z
publishDate 2010
publisher Elsevier Science BV
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-302382017-09-13T16:08:58Z Petrogenesis and tectonic significance of the ~850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry Li, X. Li, W. Li, Q. Wang, Xuan-ce Liu, Y. Yang, Y. In situ zircon Hf–O isotopes Hf–Nd isotopes Geochemistry South China U–Pb zircon age Syenites The Gangbian alkaline complex in the southeastern Yangtze Block (South China) is composed of Si-undersaturated pyroxene syenites and Si-saturated to -oversaturated syenites and quartz monzonites. SIMS zircon U–Pb analyses indicate that the complex was emplaced at 848 ± 4 Ma, during a previously-recognized interval of magmatic quiescence between the ca 1.0–0.89 Ga Sibaoan orogenic magmatism and the ca 0.83–0.78 Ga magmatic flare-up. The Gangbian rocks are characterized by wide, coherent variations in major and trace elements (SiO2 = 47.6–68.4%, K2O + Na2O = 4.5–10.5%, K2O/Na2O = 0.4–1.2, MgO = 1.2–8.5%, Cr = 4.5–239 ppm, and Ni = 4.5–143 ppm) and by enrichment in LIL and LREE and depletion in Nb, Ta and P in trace element spidergrams. Their whole-rock εNd(T) (− 6.5 to − 0.4) and εHf(T) (− 10.7 to 0.4) are positively correlated, suggesting involvement of both metasomatized mantle and continental crust materials in their genesis. In situ zircon Hf–O isotopic measurements for the most evolved quartz monzonite sample yield a binary mixing trend between the mantle- and supracrustal-derived melts.It is suggested that the pyroxene syenites were derived by partial melting of metasomatized, phlogopite-bearing lithospheric mantle, and the parental magma experienced extensive fractionation of pyroxene and olivine associated with varying degrees of crustal contamination. Subsequent fractional crystallization of hornblende and minor amounts of plagioclase from the alkali basaltic magmas, accompanied by crustal contamination, produced the Si-saturated to -oversaturated syenites and quartz monzonites. These ca. 0.85 Ga alkaline rocks and neighboring contemporaneous dolerite dykes are the products of the anorogenic magmatism after the Sibao Orogeny. They post-date the final amalgamation between the Yangtze and Cathaysia Blocks, most likely manifesting the initial rifting of South China within the Rodinia supercontinent. 2010 Journal Article http://hdl.handle.net/20.500.11937/30238 10.1016/j.lithos.2009.07.011 Elsevier Science BV restricted
spellingShingle In situ zircon Hf–O isotopes
Hf–Nd isotopes
Geochemistry
South China
U–Pb zircon age
Syenites
Li, X.
Li, W.
Li, Q.
Wang, Xuan-ce
Liu, Y.
Yang, Y.
Petrogenesis and tectonic significance of the ~850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry
title Petrogenesis and tectonic significance of the ~850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry
title_full Petrogenesis and tectonic significance of the ~850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry
title_fullStr Petrogenesis and tectonic significance of the ~850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry
title_full_unstemmed Petrogenesis and tectonic significance of the ~850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry
title_short Petrogenesis and tectonic significance of the ~850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry
title_sort petrogenesis and tectonic significance of the ~850 ma gangbian alkaline complex in south china: evidence from in situ zircon u-pb dating, hf-o isotopes and whole-rock geochemistry
topic In situ zircon Hf–O isotopes
Hf–Nd isotopes
Geochemistry
South China
U–Pb zircon age
Syenites
url http://hdl.handle.net/20.500.11937/30238