| Summary: | Data integration of multiple heterogeneous datasets from multidimensional petroleum digital ecosystems is an effective way, for extracting information and adding value to knowledge domain from multiple producing onshore and offshore basins. At present, data from multiple basins are scattered and unusable for data integration, because of scale and format differences. Ontology based warehousing and mining modeling are recommended for resolving the issues of scaling and formatting of multidimensional datasets, in which case, seismic and well-domain datasets are described. Issues, such as semantics among different data dimensions and their associated attributes are also addressed by Ontology modeling.Intelligent relationships are built among several petroleum system domains (structure, reservoir, source and seal, for example) at global scale and facilitated the integration process among multiple dimensions in a data warehouse environment. For this purpose, integrated workflows are designed for capturing and modeling unknown relationships among petroleum system data attributes in interpretable knowledge domains.This study is an effective approach in mining and interpreting data views drawn from warehoused exploration and production metadata, with special reference to Arabian onshore and offshore basins.
|