Optimising ambient setting Bayer derived fly ash geopolymers
The Bayer process utilises high concentrations of caustic and elevated temperature to liberate alumina from bauxite, for the production of aluminium and other chemicals. Within Australia, this process results in 40 million tonnes of mineral residues (Red mud) each year. Over the same period, the ene...
| Main Authors: | Jamieson, Evan, Kealley, Cat, Van Riessen, Arie, Hart, Robert D. |
|---|---|
| Format: | Journal Article |
| Published: |
mdpi
2016
|
| Online Access: | http://hdl.handle.net/20.500.11937/28639 |
Similar Items
Introducing Bayer Liquor-Derived Geopolymers
by: Kealley, Cat, et al.
Published: (2016)
by: Kealley, Cat, et al.
Published: (2016)
Bayer-geopolymers: An exploration of synergy between the alumina and geopolymer industries
by: Van Riessen, Arie, et al.
Published: (2013)
by: Van Riessen, Arie, et al.
Published: (2013)
The development of Bayer derived geopolymers as artificial aggregates
by: Jamieson, Evan, et al.
Published: (2015)
by: Jamieson, Evan, et al.
Published: (2015)
Comparison of embodied energies of Ordinary Portland Cement with Bayer-derived geopolymer products
by: Jamieson, Evan, et al.
Published: (2015)
by: Jamieson, Evan, et al.
Published: (2015)
Thermally induced microstructural changes in fly ash geopolymers: Experimental results and proposed model
by: Rickard, William, et al.
Published: (2015)
by: Rickard, William, et al.
Published: (2015)
Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature
by: Jadambaa, Temuujin, et al.
Published: (2009)
by: Jadambaa, Temuujin, et al.
Published: (2009)
Beneficiation of Collie fly ash for synthesis of geopolymer Part 2: Geopolymers
by: Van Riessen, Arie, et al.
Published: (2013)
by: Van Riessen, Arie, et al.
Published: (2013)
Effect of fly ash preliminary calcination on the properties of geopolymer
by: Jadambaa, Temuujin, et al.
Published: (2009)
by: Jadambaa, Temuujin, et al.
Published: (2009)
Preparation and characterisation of fly ash based geopolymer mortars
by: Temuujin, Jadambaa, et al.
Published: (2010)
by: Temuujin, Jadambaa, et al.
Published: (2010)
Characterization of various fly ashes for preparation of geopolymers with advanced applications
by: Temuujin, J., et al.
Published: (2013)
by: Temuujin, J., et al.
Published: (2013)
The effect of pre-treatment on the thermal performance of fly ash geopolymers
by: Rickard, William, et al.
Published: (2013)
by: Rickard, William, et al.
Published: (2013)
Benefits of sealed-curing on compressive strength of fly ash-based geopolymers
by: Lee, S., et al.
Published: (2016)
by: Lee, S., et al.
Published: (2016)
Beneficiation of Collie fly ash for synthesis of geopolymer: Part 1 – Beneficiation
by: Van Riessen, Arie, et al.
Published: (2013)
by: Van Riessen, Arie, et al.
Published: (2013)
Determination of the reactive component if fly ashes for geopolymer production using XRF and XRD
by: Williams, Ross, et al.
Published: (2010)
by: Williams, Ross, et al.
Published: (2010)
Determining the Reactivity of a Fly Ash for Production of Geopolymer
by: Chen-Tan, Nigel, et al.
Published: (2009)
by: Chen-Tan, Nigel, et al.
Published: (2009)
Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes
by: Jadambaa, Temuujin, et al.
Published: (2009)
by: Jadambaa, Temuujin, et al.
Published: (2009)
Performance of solid and cellular structured fly ash geopolymers exposed to a simulated fire
by: Rickard, William, et al.
Published: (2013)
by: Rickard, William, et al.
Published: (2013)
Properties of Ambient-Cured Fly Ash Based Geopolymers
by: Sarker, Prabir
Published: (2017)
by: Sarker, Prabir
Published: (2017)
Strategies to control the high temperature shrinkage of fly ash based geopolymers
by: Vickers, Les, et al.
Published: (2014)
by: Vickers, Les, et al.
Published: (2014)
In situ elevated temperature testing of fly ash based geopolymer composites
by: Vickers, L., et al.
Published: (2016)
by: Vickers, L., et al.
Published: (2016)
Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition
by: Rickard, William, et al.
Published: (2012)
by: Rickard, William, et al.
Published: (2012)
Development and utilisation of Bayer process by-products
by: Jamieson, Evan John
Published: (2014)
by: Jamieson, Evan John
Published: (2014)
Properties of fly ash based geopolymer for curing at ambient temperature
by: Nath, Pradip, et al.
Published: (2012)
by: Nath, Pradip, et al.
Published: (2012)
Impact of activator type on the immobilisation of lead in fly ash-based geopolymer
by: Lee, S., et al.
Published: (2016)
by: Lee, S., et al.
Published: (2016)
Characterisation of various fly ashes from Australia and Mongolia and their utilisation for preparation of Geopolymers with advanced applications
by: Jadambaa, T., et al.
Published: (2012)
by: Jadambaa, T., et al.
Published: (2012)
Study of fly ash based geopolymer concrete cured in ambient condition
by: Nath, Pradip
Published: (2014)
by: Nath, Pradip
Published: (2014)
Development of Fly Ash Based Geopolymer Concrete for Ambient Curing Condition
by: Nath, Pradip, et al.
Published: (2013)
by: Nath, Pradip, et al.
Published: (2013)
Permeability of ambient cured fly ash geopolymer concrete blended with additives
by: Nath, P., et al.
Published: (2016)
by: Nath, P., et al.
Published: (2016)
Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications
by: Rickard, William, et al.
Published: (2011)
by: Rickard, William, et al.
Published: (2011)
Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition
by: Nath, Pradip, et al.
Published: (2014)
by: Nath, Pradip, et al.
Published: (2014)
Thermal Character of Geopolymers Synthesized from Class F Fly Ash Containing High Concentrations of Iron and a-Quartz
by: Rickard, William, et al.
Published: (2010)
by: Rickard, William, et al.
Published: (2010)
Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions
by: Temuujin, Jadambaa, et al.
Published: (2011)
by: Temuujin, Jadambaa, et al.
Published: (2011)
Properties of fly ash and slag blended geopolymer concrete cured at ambient temperature
by: Deb, Partha, et al.
Published: (2013)
by: Deb, Partha, et al.
Published: (2013)
Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation
by: Temuujin, Jadambaa, et al.
Published: (2010)
by: Temuujin, Jadambaa, et al.
Published: (2010)
Fracture properties of GGBFS-blended fly ash geopolymer concrete cured in ambient temperature
by: Nath, P., et al.
Published: (2016)
by: Nath, P., et al.
Published: (2016)
Fly ash-GBBS blended geopolymer mortar for early engineering characteristic at ambient temperature
by: Nadarajah, Archanaah, et al.
Published: (2024)
by: Nadarajah, Archanaah, et al.
Published: (2024)
Wear of zirconia-dispersed alumina at ambient temperature, 140C and 250C
by: Carter, Geoffrey, et al.
Published: (2006)
by: Carter, Geoffrey, et al.
Published: (2006)
Geopolymer Mortar Derived From Wood Ash And Fly Ash With Sodium Silicate
by: Part , Wei Ken
Published: (2017)
by: Part , Wei Ken
Published: (2017)
Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing
by: Nath, Pradip, et al.
Published: (2015)
by: Nath, Pradip, et al.
Published: (2015)
Effect of alkaline activator properties on the fly ash based geopolymer concrete for ambient curing condition
by: Nath, Pradip, et al.
Published: (2013)
by: Nath, Pradip, et al.
Published: (2013)
Similar Items
-
Introducing Bayer Liquor-Derived Geopolymers
by: Kealley, Cat, et al.
Published: (2016) -
Bayer-geopolymers: An exploration of synergy between the alumina and geopolymer industries
by: Van Riessen, Arie, et al.
Published: (2013) -
The development of Bayer derived geopolymers as artificial aggregates
by: Jamieson, Evan, et al.
Published: (2015) -
Comparison of embodied energies of Ordinary Portland Cement with Bayer-derived geopolymer products
by: Jamieson, Evan, et al.
Published: (2015) -
Thermally induced microstructural changes in fly ash geopolymers: Experimental results and proposed model
by: Rickard, William, et al.
Published: (2015)