Application of the Central-Difference with Half-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-Differential Equations
The objective of this paper is to analyse the application of the Half-Sweep Gauss-Seidel (HSGS) method by using the Half-sweep approximation equation based on central difference (CD) and repeated trapezoidal (RT) formulas to solve linear fredholm integro-differential equations of first order. The fo...
| Main Authors: | , |
|---|---|
| Format: | Journal Article |
| Published: |
World Academy of Science, Engineering and Technology
2012
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/28176 |
| Summary: | The objective of this paper is to analyse the application of the Half-Sweep Gauss-Seidel (HSGS) method by using the Half-sweep approximation equation based on central difference (CD) and repeated trapezoidal (RT) formulas to solve linear fredholm integro-differential equations of first order. The formulation and implementation of the Full-Sweep Gauss-Seidel (FSGS) and Half- Sweep Gauss-Seidel (HSGS) methods are also presented. The HSGS method has been shown to rapid compared to the FSGS methods. Some numerical tests were illustrated to show that the HSGS method is superior to the FSGS method. |
|---|