Digitise This! A Quick and Easy Remote Sensing Method to Monitor the Daily Extent of Dredge Plumes

Technological advancements in remote sensing and GIS have improved natural resource managers’ abilities to monitor large-scale disturbances. In a time where many processes are heading towards automation, this study has regressed to simple techniques to bridge a gap found in the advancement of techno...

Full description

Bibliographic Details
Main Authors: Evans, Richard D., Murray, Kathy L., Field, Stuart N., Moore, James A. Y., Shedrawi, George, Huntley, Barton G., Fearns, Peter, Broomhall, Mark, McKinna, Lachlan, Marrable, Daniel
Format: Journal Article
Published: Public Library of Science 2012
Online Access:http://hdl.handle.net/20.500.11937/27761
_version_ 1848752352330252288
author Evans, Richard D.
Murray, Kathy L.
Field, Stuart N.
Moore, James A. Y.
Shedrawi, George
Huntley, Barton G.
Fearns, Peter
Broomhall, Mark
McKinna, Lachlan
Marrable, Daniel
author_facet Evans, Richard D.
Murray, Kathy L.
Field, Stuart N.
Moore, James A. Y.
Shedrawi, George
Huntley, Barton G.
Fearns, Peter
Broomhall, Mark
McKinna, Lachlan
Marrable, Daniel
author_sort Evans, Richard D.
building Curtin Institutional Repository
collection Online Access
description Technological advancements in remote sensing and GIS have improved natural resource managers’ abilities to monitor large-scale disturbances. In a time where many processes are heading towards automation, this study has regressed to simple techniques to bridge a gap found in the advancement of technology. The near-daily monitoring of dredge plume extent is common practice using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and associated algorithms to predict the total suspended solids (TSS) concentration in the surface waters originating from floods and dredge plumes. Unfortunately, these methods cannot determine the difference between dredge plume and benthic features in shallow, clear water. This case study at Barrow Island, Western Australia, uses hand digitising to demonstrate the ability of human interpretation to determine this difference with a level of confidence and compares the method to contemporary TSS methods. Hand digitising was quick, cheap and required very little training of staff to complete. Results of ANOSIM R statistics show remote sensing derived TSS provided similar spatial results if they were thresholded to at least 3 mg L-1. However, remote sensing derived TSS consistently provided false-positive readings of shallow benthic features as Plume with a threshold up to TSS of 6 mg L-1, and began providing false-negatives (excluding actual plume) at a threshold as low as 4 mg L-1. Semi-automated processes that estimate plume concentration and distinguish between plumes and shallow benthic features without the arbitrary nature of human interpretation would be preferred as a plume monitoring method. However, at this stage, the hand digitising method is very useful and is more accurate at determining plume boundaries over shallow benthic features and is accessible to all levels of management with basic training.
first_indexed 2025-11-14T08:07:15Z
format Journal Article
id curtin-20.500.11937-27761
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T08:07:15Z
publishDate 2012
publisher Public Library of Science
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-277612017-09-13T15:37:42Z Digitise This! A Quick and Easy Remote Sensing Method to Monitor the Daily Extent of Dredge Plumes Evans, Richard D. Murray, Kathy L. Field, Stuart N. Moore, James A. Y. Shedrawi, George Huntley, Barton G. Fearns, Peter Broomhall, Mark McKinna, Lachlan Marrable, Daniel Technological advancements in remote sensing and GIS have improved natural resource managers’ abilities to monitor large-scale disturbances. In a time where many processes are heading towards automation, this study has regressed to simple techniques to bridge a gap found in the advancement of technology. The near-daily monitoring of dredge plume extent is common practice using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and associated algorithms to predict the total suspended solids (TSS) concentration in the surface waters originating from floods and dredge plumes. Unfortunately, these methods cannot determine the difference between dredge plume and benthic features in shallow, clear water. This case study at Barrow Island, Western Australia, uses hand digitising to demonstrate the ability of human interpretation to determine this difference with a level of confidence and compares the method to contemporary TSS methods. Hand digitising was quick, cheap and required very little training of staff to complete. Results of ANOSIM R statistics show remote sensing derived TSS provided similar spatial results if they were thresholded to at least 3 mg L-1. However, remote sensing derived TSS consistently provided false-positive readings of shallow benthic features as Plume with a threshold up to TSS of 6 mg L-1, and began providing false-negatives (excluding actual plume) at a threshold as low as 4 mg L-1. Semi-automated processes that estimate plume concentration and distinguish between plumes and shallow benthic features without the arbitrary nature of human interpretation would be preferred as a plume monitoring method. However, at this stage, the hand digitising method is very useful and is more accurate at determining plume boundaries over shallow benthic features and is accessible to all levels of management with basic training. 2012 Journal Article http://hdl.handle.net/20.500.11937/27761 10.1371/journal.pone.0051668 http://creativecommons.org/licenses/by/4.0/ Public Library of Science fulltext
spellingShingle Evans, Richard D.
Murray, Kathy L.
Field, Stuart N.
Moore, James A. Y.
Shedrawi, George
Huntley, Barton G.
Fearns, Peter
Broomhall, Mark
McKinna, Lachlan
Marrable, Daniel
Digitise This! A Quick and Easy Remote Sensing Method to Monitor the Daily Extent of Dredge Plumes
title Digitise This! A Quick and Easy Remote Sensing Method to Monitor the Daily Extent of Dredge Plumes
title_full Digitise This! A Quick and Easy Remote Sensing Method to Monitor the Daily Extent of Dredge Plumes
title_fullStr Digitise This! A Quick and Easy Remote Sensing Method to Monitor the Daily Extent of Dredge Plumes
title_full_unstemmed Digitise This! A Quick and Easy Remote Sensing Method to Monitor the Daily Extent of Dredge Plumes
title_short Digitise This! A Quick and Easy Remote Sensing Method to Monitor the Daily Extent of Dredge Plumes
title_sort digitise this! a quick and easy remote sensing method to monitor the daily extent of dredge plumes
url http://hdl.handle.net/20.500.11937/27761