Design optimization of controller parameters used in variable speed wind energy conversion system by genetic algorithms

This paper presents an optimum design procedure for the controller used in the frequency converter of a variable speed wind turbine (VSWT) driven permanent magnet synchronous generator (PMSG) by using genetic algorithms (GAs) and response surface methodology (RSM). The cascaded control is frequently...

Full description

Bibliographic Details
Main Authors: Hasanien, H., Muyeen, S.M.
Format: Journal Article
Published: The Institute of Electrical and Electronic Engineers (IEEE) 2012
Online Access:http://hdl.handle.net/20.500.11937/27427
Description
Summary:This paper presents an optimum design procedure for the controller used in the frequency converter of a variable speed wind turbine (VSWT) driven permanent magnet synchronous generator (PMSG) by using genetic algorithms (GAs) and response surface methodology (RSM). The cascaded control is frequently used in the control of the frequency converter using the proportional plus integral (PI) controllers. The setting of the parameters of the PI controller used in a large system is cumbersome, especially in an electrical power system, which is difficult to be expressed by a mathematical model or transfer function. This study attempts to optimally design the parameters of the PI controllers used in the frequency converter of a variable speed wind energy conversion system (WECS). The effectiveness of the designed parameters using GAs-RSM is then compared with that obtained using a generalized reduced gradient (GRG) algorithm considering both symmetrical and unsymmetrical faults. The permanent fault condition due to unsuccessful reclosing of circuit breakers is considered as well. It represents another salient feature of this study. It is found that fault-ride-through of VSWT-PMSG can be improved considerably using the parameters of its frequency converter obtained from GAs-RSM.