Enhanced Sulfur Tolerance of Nickel-Based Anodes for Oxygen-Ion Conducting Solid Oxide Fuel Cells by Incorporating a Secondary Water Storing Phase
In this work, a Ni+BaZr0.4Ce0.4Y0.2O3-δ (Ni+BZCY) anode with high water storage capability is used to increase the sulfur tolerance of nickel electrocatalysts for solid oxide fuel cells (SOFCs) with an oxygen-ion conducting Sm0.2Ce0.8O1.9 (SDC) electrolyte. Attractive power outputs are still obtaine...
| Main Authors: | Wang, F., Wang, W., Qu, J., Zhong, Y., Tade, Moses, Shao, Zongping |
|---|---|
| Format: | Journal Article |
| Published: |
American Chemical Society
2014
|
| Online Access: | http://hdl.handle.net/20.500.11937/27376 |
Similar Items
Nickel-Iron Alloy Nanoparticle-Decorated K2NiF4-Type Oxide as an Efficient and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells
by: Wu, N., et al.
Published: (2017)
by: Wu, N., et al.
Published: (2017)
H2S poisoning effect and ways to improve sulfur tolerance of nickel cermet anodes operating on carbonaceous fuels
by: Chen, H., et al.
Published: (2016)
by: Chen, H., et al.
Published: (2016)
One-pot synthesis of silver-modified sulfur-tolerant anode for SOFCs with an expanded operation temperature window
by: Qu, J., et al.
Published: (2017)
by: Qu, J., et al.
Published: (2017)
A New Sodium-ion-conducting Layered Perovskite Oxide as Highly Active and Sulfur Tolerant Electrocatalyst for Solid Oxide Fuel Cells
by: Qu, J., et al.
Published: (2019)
by: Qu, J., et al.
Published: (2019)
Influence of sealing materials on the oxygen permeation fluxes of some typical oxygen ion conducting ceramic membranes
by: Chen, Y., et al.
Published: (2014)
by: Chen, Y., et al.
Published: (2014)
Self-assembled mesoporous TiO2/carbon nanotube composite with a three-dimensional conducting nanonetwork as a high-rate anode material for lithium-ion battery
by: Wang, J., et al.
Published: (2014)
by: Wang, J., et al.
Published: (2014)
Core–shell structured Li0.33La0.56TiO3 perovskite as a highly efficient and sulfur-tolerant anode for solid-oxide fuel cells
by: Wang, Wei, et al.
Published: (2015)
by: Wang, Wei, et al.
Published: (2015)
Rational Design of a Water-Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance
by: Song, Y., et al.
Published: (2017)
by: Song, Y., et al.
Published: (2017)
Ceramic lithium ion conductor to solve the anode coking problem of practical solid oxide fuel cells
by: Wang, W., et al.
Published: (2015)
by: Wang, W., et al.
Published: (2015)
Study on proton-conducting solid oxide fuel cells with a conventional nickel cermet anode operating on dimethyl ether
by: Liu, Y., et al.
Published: (2011)
by: Liu, Y., et al.
Published: (2011)
Rational Design of Perovskite-Based Anode with Decent Activity for Hydrogen Electro-Oxidation and Beneficial Effect of Sulfur for Promoting Power Generation in Solid Oxide Fuel Cells.
by: Song, Y., et al.
Published: (2018)
by: Song, Y., et al.
Published: (2018)
Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes
by: Qu, J., et al.
Published: (2015)
by: Qu, J., et al.
Published: (2015)
Effect of Pd-impregnation on performance, sulfur poisoning and tolerance of Ni/GDC anode of solid oxide fuel cells
by: Zheng, L., et al.
Published: (2012)
by: Zheng, L., et al.
Published: (2012)
Recent advances in the development of anode materials for solid oxide fuel cells utilizing liquid oxygenated hydrocarbon fuels: A mini review
by: Wang, Wei, et al.
Published: (2018)
by: Wang, Wei, et al.
Published: (2018)
High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries
by: Lin, Q., et al.
Published: (2016)
by: Lin, Q., et al.
Published: (2016)
Nickel-based anode with water storage capability to mediate carbon deposition for direct ethanol solid oxide fuel cells
by: Wang, W., et al.
Published: (2014)
by: Wang, W., et al.
Published: (2014)
Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures
by: Qu, J., et al.
Published: (2016)
by: Qu, J., et al.
Published: (2016)
Mesoporous carbon with large pores as anode for Na-ion batteries
by: Liu, J., et al.
Published: (2014)
by: Liu, J., et al.
Published: (2014)
Improving single-chamber performance of an anode-supported SOFC by impregnating anode with active nickel catalyst
by: Zhang, C., et al.
Published: (2010)
by: Zhang, C., et al.
Published: (2010)
Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries
by: Deng, X., et al.
Published: (2016)
by: Deng, X., et al.
Published: (2016)
Coke resistant and sulfur tolerant Ni-based cermet anodes for solid oxide fuel cells
by: Li, M., et al.
Published: (2017)
by: Li, M., et al.
Published: (2017)
Rational Design of Superior, Coking-Resistant, Nickel-Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel
by: Qu, J., et al.
Published: (2018)
by: Qu, J., et al.
Published: (2018)
Progress in Solid Oxide Fuel Cells with Nickel-Based Anodes Operating on Methane and Related Fuels
by: Wang, Wei, et al.
Published: (2013)
by: Wang, Wei, et al.
Published: (2013)
Mg and Fe Modified Ni/GDC Cermets as Sulfur Tolerant Anodes of Solid Oxide Fuel Cells
by: Zhang, L., et al.
Published: (2011)
by: Zhang, L., et al.
Published: (2011)
Facile fabrication and improved carbon dioxide tolerance of a novel bilayer-structured ceramic oxygen permeating membrane
by: Zhang, Z., et al.
Published: (2014)
by: Zhang, Z., et al.
Published: (2014)
Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas
by: Wang, F., et al.
Published: (2014)
by: Wang, F., et al.
Published: (2014)
Novel CO2-tolerant ion-transporting ceramic membranes with an external short circuit for oxygen separation at intermediate temperatures
by: Zhang, K, et al.
Published: (2012)
by: Zhang, K, et al.
Published: (2012)
Recent progress in metal–organic frameworks for lithium–sulfur batteries
by: Zhong, Y., et al.
Published: (2018)
by: Zhong, Y., et al.
Published: (2018)
Sulfur-nickel foam as cathode materials for lithium-sulfur batteries
by: Cheng, J., et al.
Published: (2015)
by: Cheng, J., et al.
Published: (2015)
Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries
by: Yao, L., et al.
Published: (2014)
by: Yao, L., et al.
Published: (2014)
Trapping sulfur in hierarchically porous, hollow indented carbon spheres: A high-performance cathode for lithium-sulfur batteries
by: Zhong, Y., et al.
Published: (2016)
by: Zhong, Y., et al.
Published: (2016)
Facile synthesis of a MoO2-Mo2C-C composite and its application as favorable anode material for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer in a solid oxide fuel cell
by: Wang, W., et al.
Published: (2011)
by: Wang, W., et al.
Published: (2011)
Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes
by: Wang, Wei, et al.
Published: (2013)
by: Wang, Wei, et al.
Published: (2013)
Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries
by: Zhang, M., et al.
Published: (2014)
by: Zhang, M., et al.
Published: (2014)
Single-chamber solid oxide fuel cells with nanocatalyst-modified anodes capable of in situ activation
by: Yang, G., et al.
Published: (2014)
by: Yang, G., et al.
Published: (2014)
Coking-free direct-methanol-flame fuel cell with traditional nickel-cermet anode
by: Sun, L., et al.
Published: (2010)
by: Sun, L., et al.
Published: (2010)
Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries
by: Wang, S., et al.
Published: (2017)
by: Wang, S., et al.
Published: (2017)
Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer
by: Wang, W., et al.
Published: (2009)
by: Wang, W., et al.
Published: (2009)
Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration
by: Li, Meng, et al.
Published: (2016)
by: Li, Meng, et al.
Published: (2016)
Similar Items
-
Nickel-Iron Alloy Nanoparticle-Decorated K2NiF4-Type Oxide as an Efficient and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells
by: Wu, N., et al.
Published: (2017) -
H2S poisoning effect and ways to improve sulfur tolerance of nickel cermet anodes operating on carbonaceous fuels
by: Chen, H., et al.
Published: (2016) -
One-pot synthesis of silver-modified sulfur-tolerant anode for SOFCs with an expanded operation temperature window
by: Qu, J., et al.
Published: (2017) -
A New Sodium-ion-conducting Layered Perovskite Oxide as Highly Active and Sulfur Tolerant Electrocatalyst for Solid Oxide Fuel Cells
by: Qu, J., et al.
Published: (2019) -
Influence of sealing materials on the oxygen permeation fluxes of some typical oxygen ion conducting ceramic membranes
by: Chen, Y., et al.
Published: (2014)