Surprisingly high activity for oxygen reduction reaction of selected oxides lacking long oxygen-ion diffusion paths at intermediate temperatures: A case study of cobalt-free BaFeO3-δ

The widespread application of solid oxide fuel cell technology requires the development of innovative electrodes with high activity for oxygen reduction reaction (ORR) at intermediate temperatures. Here, we demonstrate that a cobalt-free parent oxide BaFeO 3 δ (BF), which lacks long-range oxygen-i...

Full description

Bibliographic Details
Main Authors: Dong, F., Chen, Y., Chen, D., Shao, Zongping
Format: Journal Article
Published: American Chemical Society 2014
Online Access:http://hdl.handle.net/20.500.11937/26980
Description
Summary:The widespread application of solid oxide fuel cell technology requires the development of innovative electrodes with high activity for oxygen reduction reaction (ORR) at intermediate temperatures. Here, we demonstrate that a cobalt-free parent oxide BaFeO 3 δ (BF), which lacks long-range oxygen-ion diffusion paths, has surprisingly high electrocatalytic activity for ORR. Both in situ high-temperature X-ray diffraction analysis on room-temperature powder and transmission electron microscopy on quenched powder are applied to investigate the crystal structure of BF. Despite the lack of long oxygen-ion diffusion paths, the easy redox of iron cations as demonstrated by thermal gravimetric analysis (TGA) and oxygen temperature-programmed desorption and the high oxygen vacancy concentration as supported by iodometric titration and TGA bene fi t the reduction of oxygen to oxygen ions. Moreover, the electrical conductivity relaxation technique in conjunction with a transient thermogravimetric study reveals very high surface exchange kinetics of BF oxide. At 700 ° C, the area specific resistance of BF cathode, as expressed by a symmetrical cell con figuration, is only ~0.021 Ω cm 2 , and the derived single fuel cell achieves high power output with a peak power density of 870 mW cm − 2 . It suggests that an undoped BF parent oxide can be used as a high-efficiency catalyst for ORR.