A functional genomics approach to dissect the mode of action of the Stagonospora nodorum effector protein SnToxA in wheat
In this study, proteomics and metabolomics were used to study the wheat response to exposure to the SnToxA effector protein secreted by the fungal pathogen Stagonospora nodorum during infection. Ninety-one different acidic and basic proteins and 101 metabolites were differentially abundant when comp...
| Main Authors: | Vincent, D., Du Fall, L., Livk, A., Mathesius, U., Lipscombe, R., Oliver, Richard, Friesen, T., Solomon, P. |
|---|---|
| Format: | Journal Article |
| Published: |
Wiley-Blackwell Publishing Ltd.
2011
|
| Online Access: | http://hdl.handle.net/20.500.11937/26713 |
Similar Items
Prevalence and importance of sensitivity to Stagonospora nodorum necrotrophic effector SnTox3 in current Western Australian wheat cultivars.
by: Lichtenzveig, Judith, et al.
Published: (2011)
by: Lichtenzveig, Judith, et al.
Published: (2011)
The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1
by: Liu, Z., et al.
Published: (2012)
by: Liu, Z., et al.
Published: (2012)
Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system
by: Liu, Z., et al.
Published: (2006)
by: Liu, Z., et al.
Published: (2006)
Quantitative variation in effector activity of ToxA isoforms from Stagonospora nodorum and Pyrenophora tritici-repentis
by: Tan, Kar-Chun, et al.
Published: (2012)
by: Tan, Kar-Chun, et al.
Published: (2012)
A metabolomic approach to dissecting osmotic stress in the wheat pathogen Stagonospora nodorum
by: Lowe, R., et al.
Published: (2008)
by: Lowe, R., et al.
Published: (2008)
Dissecting the role of G-protein signalling in primary metabolism in the wheat pathogen Stagonospora nodorum
by: Gummer, J., et al.
Published: (2013)
by: Gummer, J., et al.
Published: (2013)
Transcriptome analysis of Stagonospora nodorum: gene models, effectors, metabolism and pantothenate dispensability
by: Ipcho, S., et al.
Published: (2011)
by: Ipcho, S., et al.
Published: (2011)
Resequencing and comparative genomics of stagonospora nodorum: Sectional gene absence and effector discovery
by: Syme, Robert, et al.
Published: (2013)
by: Syme, Robert, et al.
Published: (2013)
Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum-wheat pathosystem
by: Gao, Y., et al.
Published: (2015)
by: Gao, Y., et al.
Published: (2015)
SnTox3 Acts in Effector Triggered Susceptibility to Induce Disease on Wheat Carrying the Snn3 Gene
by: Liu, Z., et al.
Published: (2009)
by: Liu, Z., et al.
Published: (2009)
Assessing European wheat sensitivities to parastagonospora nodorum necrotrophic effectors and fine-mapping the Snn3-B1 locus conferring sensitivity to the effector SnTox3
by: Downie, R., et al.
Published: (2018)
by: Downie, R., et al.
Published: (2018)
Stagonospora nodorum: From pathology to genomics and host resistance
by: Oliver, Richard, et al.
Published: (2012)
by: Oliver, Richard, et al.
Published: (2012)
Functional characterisation of glyoxalase I from the fungal wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
The utilisation of di/tri peptides by Stagonospora nodorum is dispensable for wheat infection
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Characterization of the interaction of a novel Stagonospora nodorum host-selective toxin with a wheat susceptibility gene
by: Friesen, T., et al.
Published: (2008)
by: Friesen, T., et al.
Published: (2008)
δ-Aminolevulinic acid synthesis is required for virulence of the wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
The Transcription Factor StuA Regulates Central Carbon Metabolism,Mycotoxin Production, and Effector Gene Expression in the WheatPathogen Stagonospora nodorum
by: Ip-Cho, S., et al.
Published: (2010)
by: Ip-Cho, S., et al.
Published: (2010)
Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2005)
by: Solomon, P., et al.
Published: (2005)
Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume blotch)
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
Pathogenicity of Stagonospora nodorum requires malate synthase
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
The Disruption of a Gα Subunit Sheds New Light on the Pathogenicity of Stagonospora nodorum on Wheat
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum
by: Lowe, R., et al.
Published: (2009)
by: Lowe, R., et al.
Published: (2009)
Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography . and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum
by: Bringans, S., et al.
Published: (2009)
by: Bringans, S., et al.
Published: (2009)
Fine-mapping the wheat Snn1 locus conferring sensitivity to the Parastagonospora nodorum necrotrophic effector SnTox1 using an eight founder multiparent advanced generation inter-cross population
by: Cockram, J., et al.
Published: (2015)
by: Cockram, J., et al.
Published: (2015)
Quantitative disease resistance assessment by real-time PCR using the Stagonospora nodorum wheat pathosystem as a model
by: Oliver, Richard, et al.
Published: (2008)
by: Oliver, Richard, et al.
Published: (2008)
Dothideomycete-plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum
by: Hane, J., et al.
Published: (2007)
by: Hane, J., et al.
Published: (2007)
Quantitative proteomic analysis of G-protein signalling in Stagonospora nodorum using isobaric tags for relative and absolute quantification
by: Casey, T., et al.
Published: (2010)
by: Casey, T., et al.
Published: (2010)
Quantitative proteomic analysis of G-protein signallingin Stagonospora nodorum using isobaric tags forrelative and absolute quantification
by: Casey, T., et al.
Published: (2010)
by: Casey, T., et al.
Published: (2010)
Metabolite profiling identifies the mycotoxin alternariol in the pathogen Stagonospora nodorum
by: Tan, Kar-Chun, et al.
Published: (2009)
by: Tan, Kar-Chun, et al.
Published: (2009)
Investigating the role of calcium/calmodulin-dependent protein kinases in Stagonospora nodorum
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
Sensitivity to three Parastagonospora nodorum necrotrophic effectors in current Australian wheat cultivars and the presence of further fungal effectors
by: Tan, Kar-Chun, et al.
Published: (2013)
by: Tan, Kar-Chun, et al.
Published: (2013)
A comparative analysis of the heterotrimeric G-protein G[alpha], G[beta] and G[gamma] subunits in the wheat pathogen Stagonospora nodorum
by: Gummer, J., et al.
Published: (2012)
by: Gummer, J., et al.
Published: (2012)
Both Mating Types of Phaeosphaeria (anamorph Stagonospora) nodorum are present in Western Australia
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Heterologous Expression of the Pyrenophora tritici-repentis Effector Proteins ToxA and ToxB, and the Prevalence of Effector Sensitivity in Australian Cereal Crops
by: Moffat, Caroline, et al.
Published: (2019)
by: Moffat, Caroline, et al.
Published: (2019)
Structural characterisation of the interaction between Triticum aestivum and the dothideomycete pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
The Mak2 MAP kinase signal transduction pathway is required for pathogenicity in Stagonospora nodorum
by: Solomon, P., et al.
Published: (2005)
by: Solomon, P., et al.
Published: (2005)
Global diversity and distribution of three necrotrophic effectors in Phaeosphaeria nodorum and related species
by: McDonald, M., et al.
Published: (2013)
by: McDonald, M., et al.
Published: (2013)
A Signaling-Regulated, Short-Chain Dehydrogenase of Stagonospora nodorum Regulates Asexual Development
by: Tan, K., et al.
Published: (2008)
by: Tan, K., et al.
Published: (2008)
Malayamycin, a new streptomycete antifungal compound, specifically inhibits sporulation of Stagonospora nodorum (Berk) Castell and Germano, the cause of wheat glume blotch disease
by: Li, W., et al.
Published: (2008)
by: Li, W., et al.
Published: (2008)
Similar Items
-
Prevalence and importance of sensitivity to Stagonospora nodorum necrotrophic effector SnTox3 in current Western Australian wheat cultivars.
by: Lichtenzveig, Judith, et al.
Published: (2011) -
The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1
by: Liu, Z., et al.
Published: (2012) -
Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat
by: Solomon, P., et al.
Published: (2006) -
The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system
by: Liu, Z., et al.
Published: (2006) -
Quantitative variation in effector activity of ToxA isoforms from Stagonospora nodorum and Pyrenophora tritici-repentis
by: Tan, Kar-Chun, et al.
Published: (2012)