Facile spray-drying/pyrolysis synthesis of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries
A silicon/graphite/amorphous carbon (Si/C) composite with a low silicon content in a coreeshellstructure has been easily synthesized using a simple method based on spray drying in combination with a subsequent pyrolysis process; natural graphite serves as the core, and silicon nanoparticles, which f...
| Main Authors: | Li, M., Hou, X., Sha, Y., Wang, J., Hu, S., Liu, X., Shao, Zongping |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier SA
2014
|
| Online Access: | http://hdl.handle.net/20.500.11937/26051 |
Similar Items
Facile spray-drying/pyrolysis synthesis of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries
by: Hou, X., et al.
Published: (2014)
by: Hou, X., et al.
Published: (2014)
High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries
by: Hou, X., et al.
Published: (2015)
by: Hou, X., et al.
Published: (2015)
Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries
by: Zhang, M., et al.
Published: (2014)
by: Zhang, M., et al.
Published: (2014)
Three Strongly Coupled Allotropes in a Functionalized Porous All-Carbon Nanocomposite as a Superior Anode for Lithium-Ion Batteries
by: Deng, X., et al.
Published: (2016)
by: Deng, X., et al.
Published: (2016)
Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries
by: Yao, L., et al.
Published: (2014)
by: Yao, L., et al.
Published: (2014)
Appraisal of carbon-coated Li4Ti5O12 acanthospheres from optimized two-step hydrothermal synthesis as a superior anode for sodium-ion batteries
by: Sha, Y., et al.
Published: (2017)
by: Sha, Y., et al.
Published: (2017)
Self-adhesive Co3O4/expanded graphite paper as high-performance flexible anode for Li-ion batteries
by: Zhao, Y., et al.
Published: (2015)
by: Zhao, Y., et al.
Published: (2015)
Li4Ti5O12/Sn composite anodes for lithium-ion batteries: Synthesis and electrochemical performance
by: Cai, R., et al.
Published: (2010)
by: Cai, R., et al.
Published: (2010)
Micro-/nano-structured hybrid of exfoliated graphite and Co3O4 nanoparticles as high-performance anode material for Li-ion batteries
by: Zhao, Y., et al.
Published: (2016)
by: Zhao, Y., et al.
Published: (2016)
A hierarchical Zn2Mo3O8 nanodots–porous carbon composite as a superior anode for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
Electrochemical performance of a Ni and YSZ composite synthesised by ultrasonic spray pyrolysis as an anode for SOFCs
by: Park, H., et al.
Published: (2011)
by: Park, H., et al.
Published: (2011)
Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis
by: Gu, P., et al.
Published: (2010)
by: Gu, P., et al.
Published: (2010)
One-pot combustion synthesis of Li3VO4-Li4Ti5O12 nanocomposite as anode material of lithium-ion batteries with improved performance
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
Corncob-shaped ZnFe2O4/C nanostructures for improved anode rate and cycle performance in lithium-ion batteries
by: Mao, J., et al.
Published: (2015)
by: Mao, J., et al.
Published: (2015)
Preparation and re-examination of Li4Ti4.85Al0.15O12 as anode material of lithium-ion battery
by: Cai, R., et al.
Published: (2011)
by: Cai, R., et al.
Published: (2011)
Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance
by: Sha, Y., et al.
Published: (2013)
by: Sha, Y., et al.
Published: (2013)
Template GNL-assisted synthesis of porous Li1.2Mn0.534Ni0.133Co0.133O2: towards high performance cathodes for lithium ion batteries
by: Huang, Y., et al.
Published: (2015)
by: Huang, Y., et al.
Published: (2015)
Facile mechanochemical synthesis of nano SnO2/graphene composite from coarse metallic sn and graphite oxide: An outstanding anode material for lithium-ion batteries
by: Ye, F., et al.
Published: (2014)
by: Ye, F., et al.
Published: (2014)
Structure and defect strategy towards high-performance copper niobate as anode for Li-ion batteries
by: Su, M., et al.
Published: (2023)
by: Su, M., et al.
Published: (2023)
Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries
by: Sha, Y., et al.
Published: (2016)
by: Sha, Y., et al.
Published: (2016)
Mechanical properties of Li-Sn alloys for Li-ion battery anodes: A first-principles perspective
by: Zhang, P., et al.
Published: (2016)
by: Zhang, P., et al.
Published: (2016)
Spontaneous Weaving of Graphitic Carbon Networks Synthesized by Pyrolysis of ZIF-67 Crystals
by: Zhang, W., et al.
Published: (2017)
by: Zhang, W., et al.
Published: (2017)
The solid-state chelation synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries
by: Jiang, X., et al.
Published: (2015)
by: Jiang, X., et al.
Published: (2015)
Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries
by: Gao, X., et al.
Published: (2015)
by: Gao, X., et al.
Published: (2015)
Integration of carbon-doped ZnO/S cathode and silicon/graphene nanoplate anode for silicon-sulfur batteries
by: Aslfattahi, Navid, et al.
by: Aslfattahi, Navid, et al.
Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries
by: Wang, S., et al.
Published: (2017)
by: Wang, S., et al.
Published: (2017)
Advances in modeling and simulation of Li–air batteries
by: Tan, P., et al.
Published: (2017)
by: Tan, P., et al.
Published: (2017)
Synthesis And Electrochemical Properties Of Licoo2 Cathode With Graphite Or Graphene Anode For Aqueous Rechargeable Lithium Batteries
by: Aziz, Nur Azilina Abdul
Published: (2018)
by: Aziz, Nur Azilina Abdul
Published: (2018)
Morphology-dependent performance of Zn2GeO4 as a high-performance anode material for rechargeable lithium ion batteries
by: Feng, Y., et al.
Published: (2015)
by: Feng, Y., et al.
Published: (2015)
A strongly coupled CoS2/ reduced graphene oxide nanostructure as an anode material for efficient sodium-ion batteries
by: Xie, K., et al.
Published: (2017)
by: Xie, K., et al.
Published: (2017)
Graphite cathode and anode becoming graphene structures after cycling based on graphite-based dual ion battery using PP14NTF2
by: Li, Z., et al.
Published: (2018)
by: Li, Z., et al.
Published: (2018)
Recent progress on sodium ion batteries: Potential high-performance anodes
by: Li, L., et al.
Published: (2018)
by: Li, L., et al.
Published: (2018)
First-Principles Study on the Mechanical Properties of Lithiated Sn Anode Materials for Li-Ion Batteries
by: Zhang, Panpan
Published: (2019)
by: Zhang, Panpan
Published: (2019)
Carbon based anode materials for Li-ion battery application: a review of recent development
by: Zahoor, Ahmed, et al.
Published: (2021)
by: Zahoor, Ahmed, et al.
Published: (2021)
High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries
by: Lin, Q., et al.
Published: (2016)
by: Lin, Q., et al.
Published: (2016)
A kinetic model for diffusion and chemical reaction of silicon anode lithiation in lithium ion batteries
by: Xie, Z., et al.
Published: (2016)
by: Xie, Z., et al.
Published: (2016)
Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries
by: Deng, X., et al.
Published: (2016)
by: Deng, X., et al.
Published: (2016)
Tuning intrinsic lithiophilicity of copper foil to improve electrochemical performance of anode-free Li metal battery
by: Natarajan, Karthic, et al.
Published: (2024)
by: Natarajan, Karthic, et al.
Published: (2024)
Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrode for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
Core–shell structured Li0.33La0.56TiO3 perovskite as a highly efficient and sulfur-tolerant anode for solid-oxide fuel cells
by: Wang, Wei, et al.
Published: (2015)
by: Wang, Wei, et al.
Published: (2015)
Similar Items
-
Facile spray-drying/pyrolysis synthesis of intertwined SiO@CNFs&G composites as superior anode materials for Li-ion batteries
by: Hou, X., et al.
Published: (2014) -
High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries
by: Hou, X., et al.
Published: (2015) -
Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries
by: Zhang, M., et al.
Published: (2014) -
Three Strongly Coupled Allotropes in a Functionalized Porous All-Carbon Nanocomposite as a Superior Anode for Lithium-Ion Batteries
by: Deng, X., et al.
Published: (2016) -
Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries
by: Yao, L., et al.
Published: (2014)