Experimental evaluation of an interleaved boost topology optimized for peak power tracking control
This paper provides an experimental evaluation of a four phase Floating Interleaved Boost Converter for a photovoltaic power system application. This converter offers improved efficiency and voltage gain, while having lower input current ripple than other DC-DC boost converters. A dual loop, discret...
| Main Authors: | , , , , |
|---|---|
| Format: | Conference Paper |
| Published: |
2014
|
| Online Access: | http://hdl.handle.net/20.500.11937/25481 |
| Summary: | This paper provides an experimental evaluation of a four phase Floating Interleaved Boost Converter for a photovoltaic power system application. This converter offers improved efficiency and voltage gain, while having lower input current ripple than other DC-DC boost converters. A dual loop, discrete, linear feedback was developed to regulate inductor currents and output capacitor voltages. Maximum Power Point Tracking capability was included. Results of all control functions were used to validate the control development, and point to areas for further improvement. |
|---|