A nanostructural investigation of mechanochemically synthesised hydrogen storage materials

Aluminium, aluminium hydride (alane), and magnesium hydride nanoparticles have been mechanochemically synthesised in order to study their hydrogen sorption properties in contrast to the bulk. Nanoparticle formation was facilitated by the addition of a salt phase to ball milled chemical reagents that...

Full description

Bibliographic Details
Main Author: Paskevicius, Mark
Format: Thesis
Language:English
Published: Curtin University 2009
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/254
_version_ 1848743326848647168
author Paskevicius, Mark
author_facet Paskevicius, Mark
author_sort Paskevicius, Mark
building Curtin Institutional Repository
collection Online Access
description Aluminium, aluminium hydride (alane), and magnesium hydride nanoparticles have been mechanochemically synthesised in order to study their hydrogen sorption properties in contrast to the bulk. Nanoparticle formation was facilitated by the addition of a salt phase to ball milled chemical reagents that matched the reaction byproduct phase. The presence of a salt buffer during ball milling prevents agglomeration and thus restricts particle growth.Aluminium nanoparticles were mechanochemically synthesised with particle sizes from 40 – 55 nm. The LiCl salt by-product phase was removed by washing with a nitromethane/AlCl[subscript]3 solution resulting in 55 nm Al particles (single crystals) that did not display any crystalline oxide phases. High pressure hydrogen absorption experiments were undertaken up to 2 kbar at temperatures from 77 – 473 K to examine if there were any major thermodynamic changes to the Al. No hydrogen absorption could be detected proving that either smaller Al is required to form AlH3 under these conditions or higher pressures are needed. Ni-coated and Ti-doped Al nanoparticles were also synthesised in order to verify if catalytic metals could enhance hydriding kinetics and allow hydrogenation to occur at lower pressures. However the doped samples did not display any hydrogen absorption up to 108 bar.Alane nanoparticles were synthesised using both room temperature and cryogenic mechanochemical synthesis with particle sizes < 100 nm. The evolution of alane production was investigated as a function of milling time under a variety of milling conditions. Cryogenic milling was verified to form higher yields of AlH[subscript]3 than room temperature milling and four different alane phases (α, α', β, γ) were identified by XRD structural investigations. The LiCl reaction by-product phase was removed by washing with a nitromethane/AlCl[subscript]3 solution, which adversely reacted with the AlH[subscript]3 nanoparticles. The hydrogen desorption kinetics in washed samples were hindered, and the maximum H[subscript]2 wt.% was halved although no crystalline oxide or hydroxide phases were found using XRD. Unwashed mechanochemically synthesised AlH[subscript]3 was found to desorb at room temperature over months and significantly at 50ºC in a 24 hr period. Quantitative Rietveld results coupled with hydrogen desorption measurements suggested the presence of an amorphous AlH[subscript]3 phase in the mechanochemically synthesised samples.The mechanochemical synthesis of MgH[subscript]2 was undertaken with varying LiCl buffer quantities. Increasing the buffer resulted in MgH[subscript]2 crystallite sizes down to 6.7 nm, measured by XRD, whilst TEM investigations showed that increasing the buffer resulted in smaller, more highly dispersed MgH[subscript]2 nanoparticles. The size of these MgH[subscript]2 particles approached theoretical predictions for thermodynamic changes, where the MgH[subscript]2 is only physically bound by the LiCl. Hydrogen equilibrium pressure measurements were used to determine the decomposition enthalpy and entropy for MgH[subscript]2 nanoparticles that were mechanochemically synthesised. A reduction in both the decomposition enthalpy (ΔH decrease of 2.84 kJ/mol H[subscript]2) and entropy (ΔS decrease of 3.8 J/mol H[subscript]2/K) was found for ~7 nm MgH[subscript]2 nanoparticles in relation to bulk MgH[subscript]2. The consequence of this thermodynamic destabilization is a drop in the 1 bar hydrogen equilibrium pressure of ~6°C. The temperature drop is not as large as theoretical predictions due to the decrease in reaction entropy which partially counteracts the effect from the decrease in reaction enthalpy.
first_indexed 2025-11-14T05:43:48Z
format Thesis
id curtin-20.500.11937-254
institution Curtin University Malaysia
institution_category Local University
language English
last_indexed 2025-11-14T05:43:48Z
publishDate 2009
publisher Curtin University
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-2542017-02-20T06:42:04Z A nanostructural investigation of mechanochemically synthesised hydrogen storage materials Paskevicius, Mark aluminium hydride (alane) hydrogen sorption aluminium mechanochemical synthesis magnesium hydride nanoparticle formation nanoparticles Aluminium, aluminium hydride (alane), and magnesium hydride nanoparticles have been mechanochemically synthesised in order to study their hydrogen sorption properties in contrast to the bulk. Nanoparticle formation was facilitated by the addition of a salt phase to ball milled chemical reagents that matched the reaction byproduct phase. The presence of a salt buffer during ball milling prevents agglomeration and thus restricts particle growth.Aluminium nanoparticles were mechanochemically synthesised with particle sizes from 40 – 55 nm. The LiCl salt by-product phase was removed by washing with a nitromethane/AlCl[subscript]3 solution resulting in 55 nm Al particles (single crystals) that did not display any crystalline oxide phases. High pressure hydrogen absorption experiments were undertaken up to 2 kbar at temperatures from 77 – 473 K to examine if there were any major thermodynamic changes to the Al. No hydrogen absorption could be detected proving that either smaller Al is required to form AlH3 under these conditions or higher pressures are needed. Ni-coated and Ti-doped Al nanoparticles were also synthesised in order to verify if catalytic metals could enhance hydriding kinetics and allow hydrogenation to occur at lower pressures. However the doped samples did not display any hydrogen absorption up to 108 bar.Alane nanoparticles were synthesised using both room temperature and cryogenic mechanochemical synthesis with particle sizes < 100 nm. The evolution of alane production was investigated as a function of milling time under a variety of milling conditions. Cryogenic milling was verified to form higher yields of AlH[subscript]3 than room temperature milling and four different alane phases (α, α', β, γ) were identified by XRD structural investigations. The LiCl reaction by-product phase was removed by washing with a nitromethane/AlCl[subscript]3 solution, which adversely reacted with the AlH[subscript]3 nanoparticles. The hydrogen desorption kinetics in washed samples were hindered, and the maximum H[subscript]2 wt.% was halved although no crystalline oxide or hydroxide phases were found using XRD. Unwashed mechanochemically synthesised AlH[subscript]3 was found to desorb at room temperature over months and significantly at 50ºC in a 24 hr period. Quantitative Rietveld results coupled with hydrogen desorption measurements suggested the presence of an amorphous AlH[subscript]3 phase in the mechanochemically synthesised samples.The mechanochemical synthesis of MgH[subscript]2 was undertaken with varying LiCl buffer quantities. Increasing the buffer resulted in MgH[subscript]2 crystallite sizes down to 6.7 nm, measured by XRD, whilst TEM investigations showed that increasing the buffer resulted in smaller, more highly dispersed MgH[subscript]2 nanoparticles. The size of these MgH[subscript]2 particles approached theoretical predictions for thermodynamic changes, where the MgH[subscript]2 is only physically bound by the LiCl. Hydrogen equilibrium pressure measurements were used to determine the decomposition enthalpy and entropy for MgH[subscript]2 nanoparticles that were mechanochemically synthesised. A reduction in both the decomposition enthalpy (ΔH decrease of 2.84 kJ/mol H[subscript]2) and entropy (ΔS decrease of 3.8 J/mol H[subscript]2/K) was found for ~7 nm MgH[subscript]2 nanoparticles in relation to bulk MgH[subscript]2. The consequence of this thermodynamic destabilization is a drop in the 1 bar hydrogen equilibrium pressure of ~6°C. The temperature drop is not as large as theoretical predictions due to the decrease in reaction entropy which partially counteracts the effect from the decrease in reaction enthalpy. 2009 Thesis http://hdl.handle.net/20.500.11937/254 en Curtin University fulltext
spellingShingle aluminium hydride (alane)
hydrogen sorption
aluminium
mechanochemical synthesis
magnesium hydride
nanoparticle formation
nanoparticles
Paskevicius, Mark
A nanostructural investigation of mechanochemically synthesised hydrogen storage materials
title A nanostructural investigation of mechanochemically synthesised hydrogen storage materials
title_full A nanostructural investigation of mechanochemically synthesised hydrogen storage materials
title_fullStr A nanostructural investigation of mechanochemically synthesised hydrogen storage materials
title_full_unstemmed A nanostructural investigation of mechanochemically synthesised hydrogen storage materials
title_short A nanostructural investigation of mechanochemically synthesised hydrogen storage materials
title_sort nanostructural investigation of mechanochemically synthesised hydrogen storage materials
topic aluminium hydride (alane)
hydrogen sorption
aluminium
mechanochemical synthesis
magnesium hydride
nanoparticle formation
nanoparticles
url http://hdl.handle.net/20.500.11937/254