Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array
Anisotropic bursts of gravitational radiation produced by events such as supermassive black hole mergers leave permanent imprints on space. Such gravitational wave ‘memory’ (GWM) signals are, in principle, detectable through pulsar timing as sudden changes in the apparent pulse frequency of a pulsar...
| Main Authors: | , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Journal Article |
| Published: |
OXFORD UNIV PRESS
2015
|
| Online Access: | http://hdl.handle.net/20.500.11937/25266 |
| _version_ | 1848751660701057024 |
|---|---|
| author | Wang, J. Hobbs, G. Coles, W. Shannon, Ryan Zhu, X. Madison, D. Kerr, M. Ravi, V. Keith, M. Manchester, R. Levin, Y. Bailes, M. Bhat, N. Burke-Spolaor, S. Dai, S. Oslowski, S. van Straten, W. Toomey, L. Wang, N. Wen, L. |
| author_facet | Wang, J. Hobbs, G. Coles, W. Shannon, Ryan Zhu, X. Madison, D. Kerr, M. Ravi, V. Keith, M. Manchester, R. Levin, Y. Bailes, M. Bhat, N. Burke-Spolaor, S. Dai, S. Oslowski, S. van Straten, W. Toomey, L. Wang, N. Wen, L. |
| author_sort | Wang, J. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | Anisotropic bursts of gravitational radiation produced by events such as supermassive black hole mergers leave permanent imprints on space. Such gravitational wave ‘memory’ (GWM) signals are, in principle, detectable through pulsar timing as sudden changes in the apparent pulse frequency of a pulsar. If an array of pulsars is monitored as a GWM signal passes over the Earth, the pulsars would simultaneously appear to change pulse frequency by an amount that varies with their sky position in a quadrupolar fashion. Here, we describe a search algorithm for such events and apply the algorithm to approximately six years of data from the Parkes Pulsar Timing Array. We find no GWM events and set an upper bound on the rate for events which could have been detected. We show, using simple models of black hole coalescence rates, that this non-detection is not unexpected. |
| first_indexed | 2025-11-14T07:56:16Z |
| format | Journal Article |
| id | curtin-20.500.11937-25266 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T07:56:16Z |
| publishDate | 2015 |
| publisher | OXFORD UNIV PRESS |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-252662018-03-29T09:09:14Z Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array Wang, J. Hobbs, G. Coles, W. Shannon, Ryan Zhu, X. Madison, D. Kerr, M. Ravi, V. Keith, M. Manchester, R. Levin, Y. Bailes, M. Bhat, N. Burke-Spolaor, S. Dai, S. Oslowski, S. van Straten, W. Toomey, L. Wang, N. Wen, L. Anisotropic bursts of gravitational radiation produced by events such as supermassive black hole mergers leave permanent imprints on space. Such gravitational wave ‘memory’ (GWM) signals are, in principle, detectable through pulsar timing as sudden changes in the apparent pulse frequency of a pulsar. If an array of pulsars is monitored as a GWM signal passes over the Earth, the pulsars would simultaneously appear to change pulse frequency by an amount that varies with their sky position in a quadrupolar fashion. Here, we describe a search algorithm for such events and apply the algorithm to approximately six years of data from the Parkes Pulsar Timing Array. We find no GWM events and set an upper bound on the rate for events which could have been detected. We show, using simple models of black hole coalescence rates, that this non-detection is not unexpected. 2015 Journal Article http://hdl.handle.net/20.500.11937/25266 10.1093/mnras/stu2137 OXFORD UNIV PRESS restricted |
| spellingShingle | Wang, J. Hobbs, G. Coles, W. Shannon, Ryan Zhu, X. Madison, D. Kerr, M. Ravi, V. Keith, M. Manchester, R. Levin, Y. Bailes, M. Bhat, N. Burke-Spolaor, S. Dai, S. Oslowski, S. van Straten, W. Toomey, L. Wang, N. Wen, L. Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array |
| title | Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array |
| title_full | Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array |
| title_fullStr | Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array |
| title_full_unstemmed | Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array |
| title_short | Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array |
| title_sort | searching for gravitational wave memory bursts with the parkes pulsar timing array |
| url | http://hdl.handle.net/20.500.11937/25266 |