A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-d perovskite oxide as both the anode and cathode
A novel perovskite-type La0.8Sr0.2Sc0.2Mn0.8O3 (LSSM) oxide was synthesized and evaluated as the electrode material of a symmetric solid-oxide fuel cell. Characterization was done by electrical conductivity, crystal structure stability, redox stability, catalytic activity for methane oxidation and o...
| Main Authors: | Zheng, Y., Zhang, C., Ran, R., Cai, R., Shao, Zongping, Farrusseng, D. |
|---|---|
| Format: | Journal Article |
| Published: |
Pergamon Press
2009
|
| Online Access: | http://hdl.handle.net/20.500.11937/24907 |
Similar Items
Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel
by: Su, C., et al.
Published: (2010)
by: Su, C., et al.
Published: (2010)
Electrochemical performance of SrSc0.2Co0.8O 3-d cathode on Sm0.2Ce0.8O1.9 electrolyte for low temperature SOFCs
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
A comparative study of La0.8Sr0.2MnO3 and La0.8Sr0.2Sc0.1Mn0.9O3 as cathode materials of single-chamber SOFCs operating on a methane-air mixture
by: Zhang, C., et al.
Published: (2009)
by: Zhang, C., et al.
Published: (2009)
A composite oxygen-reduction electrode composed of SrSc 0.2Co0.8O3-d perovskite and Sm 0.2Ce0.8O1.9 for an intermediate-temperature solid-oxide fuel cell
by: An, B., et al.
Published: (2010)
by: An, B., et al.
Published: (2010)
Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3-d + Sm0.2Ce0.8O1.9 composite cathode
by: Wang, K., et al.
Published: (2008)
by: Wang, K., et al.
Published: (2008)
Electrochemical Performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ in Symmetric Cells With Sm0.2Ce0.8O1.9 Electrolyte for Nitric Oxide Reduction Reaction
by: Shi, Huangang, et al.
Published: (2020)
by: Shi, Huangang, et al.
Published: (2020)
Activation and deactivation kinetics of oxygen reduction over a la 0.8Sr0.2Sc0.1Mn0.9O3 cathode
by: Zheng, Y., et al.
Published: (2008)
by: Zheng, Y., et al.
Published: (2008)
(La0.8Sr0.2)0.9MnO3–Gd0.2Ce0.8O1.9 composite cathodes prepared from (Gd, Ce)(NO3) x -modified (La0.8Sr0.2)0.9MnO3 for intermediate-temperature solid oxide fuel cells
by: Leng, Y.J., et al.
Published: (2006)
by: Leng, Y.J., et al.
Published: (2006)
Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-d (0.0 = y = 0.8) for fuel cell applications
by: Guo, Y., et al.
Published: (2009)
by: Guo, Y., et al.
Published: (2009)
Performance and structural stability of Gd0.2Ce0.8O1.9 infiltrated La0.8Sr0.2MnO3 nanostructured oxygen electrodes of solid oxide electrolysis cells
by: Chen, Kongfa, et al.
Published: (2014)
by: Chen, Kongfa, et al.
Published: (2014)
Composite fuel electrode La0.2Sr0.8TiO3–σ-Ce0.8Sm0.2O2-σ for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser
by: Li, Y., et al.
Published: (2012)
by: Li, Y., et al.
Published: (2012)
A double-layer composite electrode based on SrSc0.2Co0.8O3-d perovskite with improved performance in intermediate temperature solid oxide fuel cells
by: An, B., et al.
Published: (2010)
by: An, B., et al.
Published: (2010)
Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-d as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell
by: Lin, Y., et al.
Published: (2008)
by: Lin, Y., et al.
Published: (2008)
Further performance improvement of Ba0.5Sr0.5Co0.8Fe0.2O3-8 pervoskite membranes for air separation
by: Chen, Z., et al.
Published: (2009)
by: Chen, Z., et al.
Published: (2009)
In situ templating synthesis of conic Ba0.5Sr 0.5Co0.8Fe0.2O3-d perovskite at elevated temperature
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
Characterization and evaluation of La0.8 Sr0.2Co0.8 Ni0.2O3-[delta] prepared by a polymer-assisted combustion synthesis as a cathode material for intermediate temperature solid oxide fuel cells
by: Chen, J., et al.
Published: (2009)
by: Chen, J., et al.
Published: (2009)
Silver-modified Ba0.5Sr0.5Co0.8Fe 0.2O3-d as cathodes for a proton conducting solid-oxide fuel cell
by: Lin, Y., et al.
Published: (2010)
by: Lin, Y., et al.
Published: (2010)
A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3−δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells
by: Ai, Na, et al.
Published: (2017)
by: Ai, Na, et al.
Published: (2017)
Influence of nitric oxide on the oxygen permeation behavior of La0.6Sr0.4Co0.2Fe0.8O3-?perovskite membranes
by: Gao, J., et al.
Published: (2019)
by: Gao, J., et al.
Published: (2019)
Study of shear for steel fibre reinforced concrete beam with ratio 0.2%, 0.4%, 0.6%, 0.8% and 1.0%
by: Ummi Izni, Mohamad Tarmizi
Published: (2010)
by: Ummi Izni, Mohamad Tarmizi
Published: (2010)
Development of a Ni-Ce0.8Zr0.2O2 catalyst for solid oxide fuel cells operating on ethanol through internal reforming
by: Liao, M., et al.
Published: (2011)
by: Liao, M., et al.
Published: (2011)
Dielectric properties of Ni0.2Zn0.8Fe2O4-polypropylene composites
by: Tan, Foo Khoon, et al.
Published: (2010)
by: Tan, Foo Khoon, et al.
Published: (2010)
Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-d cathodes prepared via electroless deposition
by: Zhou, W., et al.
Published: (2008)
by: Zhou, W., et al.
Published: (2008)
Chromium deposition and poisoning at Ba0.5Sr0.5Co0.8Fe0.2O3 cathode of solid oxide fuel cells
by: Kim, Y., et al.
Published: (2011)
by: Kim, Y., et al.
Published: (2011)
Enhanced Oxygen Permeation Behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-d Membranes in a CO2-Containing Atmosphere with a Sm0.2Ce0.8O1.9 Functional Shell
by: Zhang, K., et al.
Published: (2016)
by: Zhang, K., et al.
Published: (2016)
Effect of heat treatment on the structural, morphology and electrochemical performance of perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate protective coating for SOFC metallic interconnect
by: Tan, Kang Huai, et al.
Published: (2020)
by: Tan, Kang Huai, et al.
Published: (2020)
Synthesis and assessment of la0.8Sr0.2Sc yMn1-yO3-d as cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte
by: Gu, H., et al.
Published: (2008)
by: Gu, H., et al.
Published: (2008)
Oxygen selective membranes based on B-site cation-deficient (Ba0.5Sr0.5)(Co0.8Fe0.2)yO3-8 perovskite with improved operational stability
by: Ge, L., et al.
Published: (2008)
by: Ge, L., et al.
Published: (2008)
Low-temperature synthesis of La0.6Sr0.4Co0.2Fe0.8O3-8 perovskite powder via asymmetric sol-gel process and catalytic auto-combustion
by: Ge, L., et al.
Published: (2009)
by: Ge, L., et al.
Published: (2009)
Performance of SrSc0.2Co0.8O3-d + Sm0.5Sr0.5CoO3-d mixed-conducting composite electrodes for oxygen reduction at intermediate temperatures
by: Guo, Y., et al.
Published: (2009)
by: Guo, Y., et al.
Published: (2009)
Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review
by: Zhou, W., et al.
Published: (2009)
by: Zhou, W., et al.
Published: (2009)
Effect of foreign oxides on the phase structure, sintering and transport properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as ceramic membranes for oxygen separation
by: Ran, R., et al.
Published: (2011)
by: Ran, R., et al.
Published: (2011)
Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1-xCo0.8Fe0.2O3-d (x > 0) perovskite as a solid-oxide fuel cell cathode
by: Zhou, W., et al.
Published: (2008)
by: Zhou, W., et al.
Published: (2008)
Palladium and ceria infiltrated La0.8Sr0.2Co0.5Fe0.5O3-[delta] cathodes of solid oxide fuel cells
by: Chen, J., et al.
Published: (2009)
by: Chen, J., et al.
Published: (2009)
Chromium and Sulfur Contaminants on La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes of Solid Oxide Fuel Cells
by: Wang, C., et al.
Published: (2015)
by: Wang, C., et al.
Published: (2015)
Significant impact of the current collection material and method on the performance of Ba0.5Sr0.5Co0.8Fe 0.2O3-d electrodes in solid oxide fuel cells
by: Guo, Y., et al.
Published: (2011)
by: Guo, Y., et al.
Published: (2011)
Chromium deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells
by: Chen, K., et al.
Published: (2015)
by: Chen, K., et al.
Published: (2015)
Ce0.9Gd0.1O2−δ membranes coated with porous Ba0.5Sr0.5Co0.8Fe0.2O3−δ for oxygen separation
by: Zhang, C., et al.
Published: (2015)
by: Zhang, C., et al.
Published: (2015)
A new neodymium-doped BaZr0.8Y0.2O3-δ as potential electrolyte for proton-conducting solid oxide fuel cells
by: Liu, Y., et al.
Published: (2012)
by: Liu, Y., et al.
Published: (2012)
Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3-d oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells
by: Zhou, W., et al.
Published: (2008)
by: Zhou, W., et al.
Published: (2008)
Similar Items
-
Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel
by: Su, C., et al.
Published: (2010) -
Electrochemical performance of SrSc0.2Co0.8O 3-d cathode on Sm0.2Ce0.8O1.9 electrolyte for low temperature SOFCs
by: Zhou, W., et al.
Published: (2009) -
A comparative study of La0.8Sr0.2MnO3 and La0.8Sr0.2Sc0.1Mn0.9O3 as cathode materials of single-chamber SOFCs operating on a methane-air mixture
by: Zhang, C., et al.
Published: (2009) -
A composite oxygen-reduction electrode composed of SrSc 0.2Co0.8O3-d perovskite and Sm 0.2Ce0.8O1.9 for an intermediate-temperature solid-oxide fuel cell
by: An, B., et al.
Published: (2010) -
Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3-d + Sm0.2Ce0.8O1.9 composite cathode
by: Wang, K., et al.
Published: (2008)