A review of the alumina recovery from coal fly ash, with a focus in China
Coal fly ash, an industrial by-product, is derived from coal combustion in thermal power plants. It is one of the most complex and abundant of anthropogenic materials and its improper disposal has become an environmental concern and resulted in a waste of recoverable resources. Coal fly ash is rich...
| Main Authors: | Yao, Z., Xia, M., Sarker, Prabir, Chen, T. |
|---|---|
| Format: | Journal Article |
| Published: |
Elsevier Ltd
2014
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/23950 |
Similar Items
A comprehensive review on the applications of coal fly ash
by: Yao, Z., et al.
Published: (2015)
by: Yao, Z., et al.
Published: (2015)
Effect of Nano Silica and Ultrafine Fly Ash on Compressive Strength of High Volume Fly Ash Mortar
by: Supit, S., et al.
Published: (2013)
by: Supit, S., et al.
Published: (2013)
Bayer-geopolymers: An exploration of synergy between the alumina and geopolymer industries
by: Van Riessen, Arie, et al.
Published: (2013)
by: Van Riessen, Arie, et al.
Published: (2013)
Aluminous goethite in the bayer process and its impact on alumina recovery and settling
by: Wu, Fei
Published: (2012)
by: Wu, Fei
Published: (2012)
Characteristics of Brazilian coal fly ashes and their synthesized zeolites
by: Izidoro, Juliana, et al.
Published: (2012)
by: Izidoro, Juliana, et al.
Published: (2012)
Fly Ash Based Geopolymer Concrete with Recycled Concrete Aggregate
by: Galvin, Benjamin, et al.
Published: (2011)
by: Galvin, Benjamin, et al.
Published: (2011)
Fracture behaviour of heat cured fly ash based geopolymer concrete
by: Sarker, Prabir, et al.
Published: (2013)
by: Sarker, Prabir, et al.
Published: (2013)
Fly ash based geopolymer concrete: structural properties
by: Sarker, Prabir
Published: (2011)
by: Sarker, Prabir
Published: (2011)
Resistance to permeation of high strength concrete containing fly ash
by: Nath, Pradip, et al.
Published: (2010)
by: Nath, Pradip, et al.
Published: (2010)
An investigation into the hydrothermal processing of coal fly ash to produce zeolite for controlled release fertiliser applications
by: Elliot, Alexander Dean
Published: (2006)
by: Elliot, Alexander Dean
Published: (2006)
Fly ash based geopolymer concrete: A review
by: Nath, Pradip, et al.
Published: (2013)
by: Nath, Pradip, et al.
Published: (2013)
Coal ash foamed bricks stabilised with hydrated lime-activated GGBS (HL-GGBS) / Mohamad Ezad Hafez Mohd Pahroraji
by: Mohd Pahroraji, Mohamad Ezad Hafez
Published: (2017)
by: Mohd Pahroraji, Mohamad Ezad Hafez
Published: (2017)
Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete
by: Sarker, Prabir, et al.
Published: (2014)
by: Sarker, Prabir, et al.
Published: (2014)
Fly ash-based geopolymer concrete
by: Rangan, B. Vijaya
Published: (2008)
by: Rangan, B. Vijaya
Published: (2008)
Improvement of Durability and Service Life of Concrete Using Class F Fly Ash
by: Nath, Pradip, et al.
Published: (2011)
by: Nath, Pradip, et al.
Published: (2011)
Effect of Fly Ash on the Durability Properties of High Strength Concrete
by: Nath, Pradip, et al.
Published: (2011)
by: Nath, Pradip, et al.
Published: (2011)
Properties of fly ash based geopolymer for curing at ambient temperature
by: Nath, Pradip, et al.
Published: (2012)
by: Nath, Pradip, et al.
Published: (2012)
Properties of fly ash and slag blended geopolymer concrete cured at ambient temperature
by: Deb, Partha, et al.
Published: (2013)
by: Deb, Partha, et al.
Published: (2013)
Development of Fly Ash Based Geopolymer Concrete for Ambient Curing Condition
by: Nath, Pradip, et al.
Published: (2013)
by: Nath, Pradip, et al.
Published: (2013)
Carbonation of High Strength Concrete Containing Class F Fly Ash
by: Nath, Pradip, et al.
Published: (2012)
by: Nath, Pradip, et al.
Published: (2012)
Properties of High Strength Concrete Containing Class F Fly Ash
by: Nath, Pradip, et al.
Published: (2014)
by: Nath, Pradip, et al.
Published: (2014)
Laboratory Investigation on the Effect of Fly Ash on the Compressibility of Soil
by: Amiralian, S, et al.
Published: (2012)
by: Amiralian, S, et al.
Published: (2012)
Understanding the unusual fluidity characteristics of high ash Indian bituminous coals
by: Das, Bidyut, et al.
Published: (2018)
by: Das, Bidyut, et al.
Published: (2018)
A Review on The Lime and Fly ash Application in Soil Stabilization
by: Amiralian, Saeid, et al.
Published: (2012)
by: Amiralian, Saeid, et al.
Published: (2012)
Activated alumina-based adsorption and recovery of excess fluoride ions subsequent to calcium and magnesium removal in base metal leach circuits
by: Lorenzen, L., et al.
Published: (2009)
by: Lorenzen, L., et al.
Published: (2009)
Sulphate resistance of slag blended fly ash based geopolymer concrete
by: Deb, Partha, et al.
Published: (2013)
by: Deb, Partha, et al.
Published: (2013)
Manufacture of Low-Grade Zeolites from Fly Ash for Fertiliser Applications
by: Fansuri, Hamzah, et al.
Published: (2008)
by: Fansuri, Hamzah, et al.
Published: (2008)
Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete
by: Hardjito, Djwantoro, et al.
Published: (2005)
by: Hardjito, Djwantoro, et al.
Published: (2005)
Geopolymer Concrete Using Fly Ash
by: Sarker, Prabir, et al.
Published: (2014)
by: Sarker, Prabir, et al.
Published: (2014)
Strength and permeation properties of slag blended fly ash based geopolymer concrete
by: Deb, Partha, et al.
Published: (2013)
by: Deb, Partha, et al.
Published: (2013)
Low-Calcium fly ash-based geopolymer concrete: Reinforced beams and columns
by: Sumajouw, Marthin, et al.
Published: (2006)
by: Sumajouw, Marthin, et al.
Published: (2006)
Low-Calcium fly ash-based geopolymer concrete: Long-term properties
by: Wallah, Steenie, et al.
Published: (2006)
by: Wallah, Steenie, et al.
Published: (2006)
Drying Shrinkage of slag blended fly ash geopolymer concrete cured at room temperature
by: Deb, Partha, et al.
Published: (2015)
by: Deb, Partha, et al.
Published: (2015)
Stabilization of residual soil with alkali-activated fly ash and inclusion of treated coir fibre
by: Tan, Teing Teing
Published: (2019)
by: Tan, Teing Teing
Published: (2019)
Effect of fly ash on the potential alkali silica reaction of ferronickel slag aggregate
by: Saha, Ashish Kumer, et al.
Published: (2017)
by: Saha, Ashish Kumer, et al.
Published: (2017)
The use of coal ash from power plants as a soil conditioner
by: Sanga, Hilda Gerald
Published: (2019)
by: Sanga, Hilda Gerald
Published: (2019)
Fire endurance of steel reinforced fly ash geopolymer concrete elements
by: Sarker, Prabir, et al.
Published: (2015)
by: Sarker, Prabir, et al.
Published: (2015)
Effect of alkaline activator properties on the fly ash based geopolymer concrete for ambient curing condition
by: Nath, Pradip, et al.
Published: (2013)
by: Nath, Pradip, et al.
Published: (2013)
Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing
by: Nath, Pradip, et al.
Published: (2015)
by: Nath, Pradip, et al.
Published: (2015)
Strength and Hydration Heat of Concrete using Fly Ash as a Partial Replacement of Cement
by: Sarker, Prabir, et al.
Published: (2009)
by: Sarker, Prabir, et al.
Published: (2009)
Similar Items
-
A comprehensive review on the applications of coal fly ash
by: Yao, Z., et al.
Published: (2015) -
Effect of Nano Silica and Ultrafine Fly Ash on Compressive Strength of High Volume Fly Ash Mortar
by: Supit, S., et al.
Published: (2013) -
Bayer-geopolymers: An exploration of synergy between the alumina and geopolymer industries
by: Van Riessen, Arie, et al.
Published: (2013) -
Aluminous goethite in the bayer process and its impact on alumina recovery and settling
by: Wu, Fei
Published: (2012) -
Characteristics of Brazilian coal fly ashes and their synthesized zeolites
by: Izidoro, Juliana, et al.
Published: (2012)