Enhanced Oxygen Permeation of Pt-modified La0.6Sr0.4Co0.2Fe0.8O3-[alpha] Hollow Fibre Membranes
Perovskite La0.6Sr0.4Co0.2Fe0.8O3-α (LSCF) hollow fibre membranes were fabricated by a combined phase inversion and sintering technique. The prepared membrane possessed a novel structure consisting of only one thin dense layer and one porous layer. A porous layer of platinum was coated on the outer...
| Main Authors: | , , , |
|---|---|
| Other Authors: | |
| Format: | Conference Paper |
| Published: |
Trans Tech Publications Inc
2012
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/23662 |
| Summary: | Perovskite La0.6Sr0.4Co0.2Fe0.8O3-α (LSCF) hollow fibre membranes were fabricated by a combined phase inversion and sintering technique. The prepared membrane possessed a novel structure consisting of only one thin dense layer and one porous layer. A porous layer of platinum was coated on the outer surface of the hollow fibres to improve the surface exchange reactions. Oxygen permeation fluxes through both the original and modified hollow fibre membranes were measured under air/He gradients at different temperature. The results indicated that the oxygen permeation fluxes can be improved from the initial values of 0.17-1.58 ml cm-2 min-1 in the original hollow fibre membrane to 0.29-3.99 ml cm-2 min-1 in the Pt-modified membrane in the temperature range of 750-950 °C. An oxygen spillover mechanism has been put forward to explain the effect of Pt on the improvement of oxygen permeation fluxes. |
|---|