Quantitative proteomic analysis of G-protein signallingin Stagonospora nodorum using isobaric tags forrelative and absolute quantification
The G protein a-subunit (Gna1) in the wheat pathogen Stagonospora nodorum has previouslybeen shown to be a critical controlling element in disease ontogeny. In this study, iTRAQ and2-D LC MALDI-MS/MS have been used to characterise protein expression changes in the S.nodorum gna1 strain versus the SN...
| Main Authors: | Casey, T., Solomon, P., Bringans, S., Tan, Kar-Chun, Oliver, Richard, Lipscombe, R. |
|---|---|
| Format: | Journal Article |
| Published: |
Wiley - VCH Verlag GmbH & Co. KGaA
2010
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/23148 |
Similar Items
Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation
by: Zhou, Chun-Xue, et al.
Published: (2016)
by: Zhou, Chun-Xue, et al.
Published: (2016)
Quantitative proteomic analysis of G-protein signalling in Stagonospora nodorum using isobaric tags for relative and absolute quantification
by: Casey, T., et al.
Published: (2010)
by: Casey, T., et al.
Published: (2010)
Proteomic identification of extracellular proteins regulated by the Gna1 Gα subunit in Stagonospora nodorum
by: Tan, Kar-Chun, et al.
Published: (2009)
by: Tan, Kar-Chun, et al.
Published: (2009)
Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2005)
by: Solomon, P., et al.
Published: (2005)
Analysis of reproducibility for proteome coverage and quantitation using isobaric mass tags (iTRAQ and TMT)
by: Casey, T., et al.
Published: (2017)
by: Casey, T., et al.
Published: (2017)
Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
The Mak2 MAP kinase signal transduction pathway is required for pathogenicity in Stagonospora nodorum
by: Solomon, P., et al.
Published: (2005)
by: Solomon, P., et al.
Published: (2005)
Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography . and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum
by: Bringans, S., et al.
Published: (2009)
by: Bringans, S., et al.
Published: (2009)
Pathogenicity of Stagonospora nodorum requires malate synthase
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Photochemical characterization of a novel fungal rhodopsin from Phaeosphaeria nodorum
by: Fan, Ying, et al.
Published: (2011)
by: Fan, Ying, et al.
Published: (2011)
Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum
by: Lowe, R., et al.
Published: (2009)
by: Lowe, R., et al.
Published: (2009)
Stagonospora nodorum: From pathology to genomics and host resistance
by: Oliver, Richard, et al.
Published: (2012)
by: Oliver, Richard, et al.
Published: (2012)
Metabolite profiling identifies the mycotoxin alternariol in the pathogen Stagonospora nodorum
by: Tan, Kar-Chun, et al.
Published: (2009)
by: Tan, Kar-Chun, et al.
Published: (2009)
The utilisation of di/tri peptides by Stagonospora nodorum is dispensable for wheat infection
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Investigating the role of calcium/calmodulin-dependent protein kinases in Stagonospora nodorum
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
Functional characterisation of glyoxalase I from the fungal wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
δ-Aminolevulinic acid synthesis is required for virulence of the wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
Both Mating Types of Phaeosphaeria (anamorph Stagonospora) nodorum are present in Western Australia
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Structural characterisation of the interaction between Triticum aestivum and the dothideomycete pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
A functional genomics approach to dissect the mode of action of the Stagonospora nodorum effector protein SnToxA in wheat
by: Vincent, D., et al.
Published: (2011)
by: Vincent, D., et al.
Published: (2011)
A metabolomic approach to dissecting osmotic stress in the wheat pathogen Stagonospora nodorum
by: Lowe, R., et al.
Published: (2008)
by: Lowe, R., et al.
Published: (2008)
Transcriptome analysis of Stagonospora nodorum: gene models, effectors, metabolism and pantothenate dispensability
by: Ipcho, S., et al.
Published: (2011)
by: Ipcho, S., et al.
Published: (2011)
Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume blotch)
by: Solomon, P., et al.
Published: (2006)
by: Solomon, P., et al.
Published: (2006)
Dissecting the role of G-protein signalling in primary metabolism in the wheat pathogen Stagonospora nodorum
by: Gummer, J., et al.
Published: (2013)
by: Gummer, J., et al.
Published: (2013)
Seasonal variation characteristics of fungi aerosol tracers in the northern Zhejiang Province
by: Xu, Honghui, et al.
Published: (2018)
by: Xu, Honghui, et al.
Published: (2018)
A Signaling-Regulated, Short-Chain Dehydrogenase of Stagonospora nodorum Regulates Asexual Development
by: Tan, K., et al.
Published: (2008)
by: Tan, K., et al.
Published: (2008)
The Disruption of a Gα Subunit Sheds New Light on the Pathogenicity of Stagonospora nodorum on Wheat
by: Solomon, P., et al.
Published: (2004)
by: Solomon, P., et al.
Published: (2004)
Characterization of the interaction of a novel Stagonospora nodorum host-selective toxin with a wheat susceptibility gene
by: Friesen, T., et al.
Published: (2008)
by: Friesen, T., et al.
Published: (2008)
Highly efficient intracellular transduction in three-dimensional gradients for programming cell fate
by: Eltaher, Hoda M., et al.
Published: (2016)
by: Eltaher, Hoda M., et al.
Published: (2016)
Osteogenic programming of human mesenchymal stem cells with highly efficient intracellular delivery of RUNX2
by: Thiagarajan, Lalitha, et al.
Published: (2017)
by: Thiagarajan, Lalitha, et al.
Published: (2017)
Dothideomycete-plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum
by: Hane, J., et al.
Published: (2007)
by: Hane, J., et al.
Published: (2007)
Resequencing and comparative genomics of stagonospora nodorum: Sectional gene absence and effector discovery
by: Syme, Robert, et al.
Published: (2013)
by: Syme, Robert, et al.
Published: (2013)
Quantitative disease resistance assessment by real-time PCR using the Stagonospora nodorum wheat pathosystem as a model
by: Oliver, Richard, et al.
Published: (2008)
by: Oliver, Richard, et al.
Published: (2008)
Decoding the mannitol enigma in filamentous fungi
by: Solomon, P., et al.
Published: (2007)
by: Solomon, P., et al.
Published: (2007)
Controlled release of GAG-binding enhanced transduction (GET) peptides for sustained and highly efficient intracellular delivery
by: Abu-Awwad, Hosam Al-Deen M., et al.
Published: (2017)
by: Abu-Awwad, Hosam Al-Deen M., et al.
Published: (2017)
A comparative analysis of the heterotrimeric G-protein G[alpha], G[beta] and G[gamma] subunits in the wheat pathogen Stagonospora nodorum
by: Gummer, J., et al.
Published: (2012)
by: Gummer, J., et al.
Published: (2012)
The Transcription Factor StuA Regulates Central Carbon Metabolism,Mycotoxin Production, and Effector Gene Expression in the WheatPathogen Stagonospora nodorum
by: Ip-Cho, S., et al.
Published: (2010)
by: Ip-Cho, S., et al.
Published: (2010)
Quantitative variation in effector activity of ToxA isoforms from Stagonospora nodorum and Pyrenophora tritici-repentis
by: Tan, Kar-Chun, et al.
Published: (2012)
by: Tan, Kar-Chun, et al.
Published: (2012)
Suppression of essential pro-inflammatory signaling pathways by natural agents for the therapy of Multiple Myeloma
by: Sikka, S., et al.
Published: (2014)
by: Sikka, S., et al.
Published: (2014)
The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1
by: Liu, Z., et al.
Published: (2012)
by: Liu, Z., et al.
Published: (2012)
Similar Items
-
Global iTRAQ-based proteomic profiling of Toxoplasma gondii oocysts during sporulation
by: Zhou, Chun-Xue, et al.
Published: (2016) -
Quantitative proteomic analysis of G-protein signalling in Stagonospora nodorum using isobaric tags for relative and absolute quantification
by: Casey, T., et al.
Published: (2010) -
Proteomic identification of extracellular proteins regulated by the Gna1 Gα subunit in Stagonospora nodorum
by: Tan, Kar-Chun, et al.
Published: (2009) -
Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum
by: Solomon, P., et al.
Published: (2005) -
Analysis of reproducibility for proteome coverage and quantitation using isobaric mass tags (iTRAQ and TMT)
by: Casey, T., et al.
Published: (2017)