Estimation of Induction Motor Parameters Using Hybrid Algorithms for Power System Dynamic Studies

This paper proposes a hybrid Newton-Raphson and genetic algorithm for the estimation of double cage induction motor parameters from commonly available manufacturer data. The hybrid algorithm was tested on a large data set of 6,380 IEC and NEMA motors and then compared with a baseline Newton-Raphson...

Full description

Bibliographic Details
Main Authors: Susanto, Julius, Islam, Syed
Other Authors: Michael Negnevitsky
Format: Conference Paper
Published: University of Tasmania 2013
Subjects:
Online Access:http://hdl.handle.net/20.500.11937/23117
_version_ 1848751060853719040
author Susanto, Julius
Islam, Syed
author2 Michael Negnevitsky
author_facet Michael Negnevitsky
Susanto, Julius
Islam, Syed
author_sort Susanto, Julius
building Curtin Institutional Repository
collection Online Access
description This paper proposes a hybrid Newton-Raphson and genetic algorithm for the estimation of double cage induction motor parameters from commonly available manufacturer data. The hybrid algorithm was tested on a large data set of 6,380 IEC and NEMA motors and then compared with a baseline Newton-Raphson algorithm. The simulation results show that while the proposed hybrid algorithm is more computationally intensive, it does make significant improvements to convergence and error rates.
first_indexed 2025-11-14T07:46:44Z
format Conference Paper
id curtin-20.500.11937-23117
institution Curtin University Malaysia
institution_category Local University
last_indexed 2025-11-14T07:46:44Z
publishDate 2013
publisher University of Tasmania
recordtype eprints
repository_type Digital Repository
spelling curtin-20.500.11937-231172017-09-13T13:59:01Z Estimation of Induction Motor Parameters Using Hybrid Algorithms for Power System Dynamic Studies Susanto, Julius Islam, Syed Michael Negnevitsky hybrid algorithm parameter estimation Induction motor This paper proposes a hybrid Newton-Raphson and genetic algorithm for the estimation of double cage induction motor parameters from commonly available manufacturer data. The hybrid algorithm was tested on a large data set of 6,380 IEC and NEMA motors and then compared with a baseline Newton-Raphson algorithm. The simulation results show that while the proposed hybrid algorithm is more computationally intensive, it does make significant improvements to convergence and error rates. 2013 Conference Paper http://hdl.handle.net/20.500.11937/23117 10.1109/AUPEC.2013.6725462 University of Tasmania restricted
spellingShingle hybrid algorithm
parameter estimation
Induction motor
Susanto, Julius
Islam, Syed
Estimation of Induction Motor Parameters Using Hybrid Algorithms for Power System Dynamic Studies
title Estimation of Induction Motor Parameters Using Hybrid Algorithms for Power System Dynamic Studies
title_full Estimation of Induction Motor Parameters Using Hybrid Algorithms for Power System Dynamic Studies
title_fullStr Estimation of Induction Motor Parameters Using Hybrid Algorithms for Power System Dynamic Studies
title_full_unstemmed Estimation of Induction Motor Parameters Using Hybrid Algorithms for Power System Dynamic Studies
title_short Estimation of Induction Motor Parameters Using Hybrid Algorithms for Power System Dynamic Studies
title_sort estimation of induction motor parameters using hybrid algorithms for power system dynamic studies
topic hybrid algorithm
parameter estimation
Induction motor
url http://hdl.handle.net/20.500.11937/23117