| Summary: | This pilot study elaborates the development of novel epoxy/electrospun polylactic acid (PLA) nanofibre composites at the fibre contents of 3, 5 and 10 wt% to evaluate their mechanical and thermal properties using flexural tests and differential scanning calorimetry (DSC). The flexural moduli of composites increase remarkably by 50.8% and 24.0% for 5 wt% and 10 wt% fibre contents, respectively, relative to that of neat epoxy. Furthermore, the similar tendency is also shown for corresponding flexural strengths being enhanced by 31.6% and 4.8%. Fractured surface morphology with scanning electron microscopy (SEM) confirms a full permeation of cured epoxy matrix into nanofibre structures and existence of non-destructive fibrous networks inside large void cavities. The glass transition temperature (Tg) of composites increases up to 54-60°C due to embedded electrospun nanofibres compared to 50°C for that of epoxy, indicating that fibrous networks may further restrict the intermolecular mobility of matrix in thermal effects.
|