An inverse railway wagon model and its applications
An inverse wagon model was developed to estimate wheel-rail contact forces using only measurements of wagon body responses as inputs. The purpose of this work was to provide mathematical modelling to embed in low-cost devices that can be mounted on each freight wagon in a large wagon fleet. To minim...
| Main Authors: | , , |
|---|---|
| Format: | Journal Article |
| Published: |
Taylor & Francis
2007
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/22672 |
| _version_ | 1848750935501701120 |
|---|---|
| author | Xia, F. Cole, C. Wolfs, Peter |
| author_facet | Xia, F. Cole, C. Wolfs, Peter |
| author_sort | Xia, F. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | An inverse wagon model was developed to estimate wheel-rail contact forces using only measurements of wagon body responses as inputs. The purpose of this work was to provide mathematical modelling to embed in low-cost devices that can be mounted on each freight wagon in a large wagon fleet. To minimize cost, complication, and the maintenance inconvenience of these devices, the constraint is imposed that transducers and connections are limited to locations on the wagon body. Inputs to the inverse model developed include only vertical and lateral translational accelerations and angular accelerations of roll, pitch, and yaw of the wagon body. The model combines the integration and partial modal matrix (PMM) techniques together to form an IPMM method. Besides wheel-rail contact forces some motion quantities such as the lateral and yaw displacements of wheelset are also predicted. Results from the inverse model were compared with data from full scale laboratory suspension tests for vertical suspension excitations. The inverse model was also compared with results from simulations completed in VAMPIRE for more complicated track input profiles. The model results and the applications of the model are discussed. |
| first_indexed | 2025-11-14T07:44:44Z |
| format | Journal Article |
| id | curtin-20.500.11937-22672 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T07:44:44Z |
| publishDate | 2007 |
| publisher | Taylor & Francis |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-226722017-09-13T15:59:26Z An inverse railway wagon model and its applications Xia, F. Cole, C. Wolfs, Peter Inverse wagon model Wagon body accelerations Wheel-rail contact forces Forward wagon model An inverse wagon model was developed to estimate wheel-rail contact forces using only measurements of wagon body responses as inputs. The purpose of this work was to provide mathematical modelling to embed in low-cost devices that can be mounted on each freight wagon in a large wagon fleet. To minimize cost, complication, and the maintenance inconvenience of these devices, the constraint is imposed that transducers and connections are limited to locations on the wagon body. Inputs to the inverse model developed include only vertical and lateral translational accelerations and angular accelerations of roll, pitch, and yaw of the wagon body. The model combines the integration and partial modal matrix (PMM) techniques together to form an IPMM method. Besides wheel-rail contact forces some motion quantities such as the lateral and yaw displacements of wheelset are also predicted. Results from the inverse model were compared with data from full scale laboratory suspension tests for vertical suspension excitations. The inverse model was also compared with results from simulations completed in VAMPIRE for more complicated track input profiles. The model results and the applications of the model are discussed. 2007 Journal Article http://hdl.handle.net/20.500.11937/22672 10.1080/00423110601079151 Taylor & Francis restricted |
| spellingShingle | Inverse wagon model Wagon body accelerations Wheel-rail contact forces Forward wagon model Xia, F. Cole, C. Wolfs, Peter An inverse railway wagon model and its applications |
| title | An inverse railway wagon model and its applications |
| title_full | An inverse railway wagon model and its applications |
| title_fullStr | An inverse railway wagon model and its applications |
| title_full_unstemmed | An inverse railway wagon model and its applications |
| title_short | An inverse railway wagon model and its applications |
| title_sort | inverse railway wagon model and its applications |
| topic | Inverse wagon model Wagon body accelerations Wheel-rail contact forces Forward wagon model |
| url | http://hdl.handle.net/20.500.11937/22672 |