The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium
A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. This article describes a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is...
| Main Authors: | , , , |
|---|---|
| Format: | Journal Article |
| Published: |
BLACKWELL PUBLISHING
2013
|
| Subjects: | |
| Online Access: | http://hdl.handle.net/20.500.11937/22547 |
| _version_ | 1848750900326170624 |
|---|---|
| author | Roach, D. Ross, K. Gale, Julian Taylor, J. |
| author_facet | Roach, D. Ross, K. Gale, Julian Taylor, J. |
| author_sort | Roach, D. |
| building | Curtin Institutional Repository |
| collection | Online Access |
| description | A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. This article describes a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features, determined, for example, by boundaries of the (Q, ω) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross section, the other components of which (multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, the poly-CINS has been measured for polycrystalline aluminium using the MARI spectrometer (ISIS), because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of embedded atom method force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single-crystal dispersion curves are not available. |
| first_indexed | 2025-11-14T07:44:11Z |
| format | Journal Article |
| id | curtin-20.500.11937-22547 |
| institution | Curtin University Malaysia |
| institution_category | Local University |
| last_indexed | 2025-11-14T07:44:11Z |
| publishDate | 2013 |
| publisher | BLACKWELL PUBLISHING |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | curtin-20.500.11937-225472017-09-13T13:55:44Z The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium Roach, D. Ross, K. Gale, Julian Taylor, J. Polycrystalline coherent inelastic neutron scattering A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. This article describes a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features, determined, for example, by boundaries of the (Q, ω) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross section, the other components of which (multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, the poly-CINS has been measured for polycrystalline aluminium using the MARI spectrometer (ISIS), because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of embedded atom method force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single-crystal dispersion curves are not available. 2013 Journal Article http://hdl.handle.net/20.500.11937/22547 10.1107/S0021889813023728 BLACKWELL PUBLISHING fulltext |
| spellingShingle | Polycrystalline coherent inelastic neutron scattering Roach, D. Ross, K. Gale, Julian Taylor, J. The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium |
| title | The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium |
| title_full | The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium |
| title_fullStr | The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium |
| title_full_unstemmed | The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium |
| title_short | The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium |
| title_sort | interpretation of polycrystalline coherent inelastic neutron scattering from aluminium |
| topic | Polycrystalline coherent inelastic neutron scattering |
| url | http://hdl.handle.net/20.500.11937/22547 |